Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the inequality [tex]\(4x - 12 \leq 16 + 8x\)[/tex], we need to isolate [tex]\(x\)[/tex] on one side of the inequality.
1. Start by subtracting [tex]\(4x\)[/tex] from both sides:
[tex]\[ 4x - 12 - 4x \leq 16 + 8x - 4x \][/tex]
This simplifies to:
[tex]\[ -12 \leq 16 + 4x \][/tex]
2. Next, subtract 16 from both sides to further isolate [tex]\(x\)[/tex]:
[tex]\[ -12 - 16 \leq 4x \][/tex]
Simplifying this gives:
[tex]\[ -28 \leq 4x \][/tex]
3. Now, divide both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{-28}{4} \leq x \][/tex]
This simplifies to:
[tex]\[ -7 \leq x \quad \text{or} \quad x \geq -7 \][/tex]
This means the solution to the inequality [tex]\(4x - 12 \leq 16 + 8x\)[/tex] is [tex]\(x \geq -7\)[/tex].
Now, let's check each of the given values against this solution:
- For [tex]\(x = -10\)[/tex]:
[tex]\[ -10 \geq -7 \quad \text{is false} \][/tex]
- For [tex]\(x = -9\)[/tex]:
[tex]\[ -9 \geq -7 \quad \text{is false} \][/tex]
- For [tex]\(x = -8\)[/tex]:
[tex]\[ -8 \geq -7 \quad \text{is false} \][/tex]
- For [tex]\(x = -7\)[/tex]:
[tex]\[ -7 \geq -7 \quad \text{is true} \][/tex]
Only [tex]\(x = -7\)[/tex] satisfies the inequality. Therefore, the value of [tex]\(x\)[/tex] that is in the solution set of the inequality [tex]\(4x - 12 \leq 16 + 8x\)[/tex] is [tex]\( \boxed{-7} \)[/tex].
1. Start by subtracting [tex]\(4x\)[/tex] from both sides:
[tex]\[ 4x - 12 - 4x \leq 16 + 8x - 4x \][/tex]
This simplifies to:
[tex]\[ -12 \leq 16 + 4x \][/tex]
2. Next, subtract 16 from both sides to further isolate [tex]\(x\)[/tex]:
[tex]\[ -12 - 16 \leq 4x \][/tex]
Simplifying this gives:
[tex]\[ -28 \leq 4x \][/tex]
3. Now, divide both sides by 4 to solve for [tex]\(x\)[/tex]:
[tex]\[ \frac{-28}{4} \leq x \][/tex]
This simplifies to:
[tex]\[ -7 \leq x \quad \text{or} \quad x \geq -7 \][/tex]
This means the solution to the inequality [tex]\(4x - 12 \leq 16 + 8x\)[/tex] is [tex]\(x \geq -7\)[/tex].
Now, let's check each of the given values against this solution:
- For [tex]\(x = -10\)[/tex]:
[tex]\[ -10 \geq -7 \quad \text{is false} \][/tex]
- For [tex]\(x = -9\)[/tex]:
[tex]\[ -9 \geq -7 \quad \text{is false} \][/tex]
- For [tex]\(x = -8\)[/tex]:
[tex]\[ -8 \geq -7 \quad \text{is false} \][/tex]
- For [tex]\(x = -7\)[/tex]:
[tex]\[ -7 \geq -7 \quad \text{is true} \][/tex]
Only [tex]\(x = -7\)[/tex] satisfies the inequality. Therefore, the value of [tex]\(x\)[/tex] that is in the solution set of the inequality [tex]\(4x - 12 \leq 16 + 8x\)[/tex] is [tex]\( \boxed{-7} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.