Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the final temperature when mixing two water samples, we can use the principle of conservation of energy. The heat lost by the hotter water will be equal to the heat gained by the cooler water. Here's a step-by-step explanation:
1. Identify the masses and initial temperatures of the water samples:
- Mass of the first sample, [tex]\( m_1 = 50 \)[/tex] grams
- Initial temperature of the first sample, [tex]\( T_{1_{\text{initial}}} = 20^{\circ}C \)[/tex]
- Mass of the second sample, [tex]\( m_2 = 50 \)[/tex] grams
- Initial temperature of the second sample, [tex]\( T_{2_{\text{initial}}} = 40^{\circ}C \)[/tex]
2. Since both water samples have the same specific heat capacity, we can directly use the concept of weighted averages to find the final equilibrium temperature.
3. The final temperature [tex]\( T_f \)[/tex] of the mixture will be a weighted average of the initial temperatures, considering the masses:
[tex]\[ T_f = \frac{m_1 \cdot T_{1_{\text{initial}}} + m_2 \cdot T_{2_{\text{initial}}}}{m_1 + m_2} \][/tex]
4. Substitute the given values into the formula:
[tex]\[ T_f = \frac{(50 \, \text{g} \cdot 20^{\circ}\text{C}) + (50 \, \text{g} \cdot 40^{\circ}\text{C})}{50 \, \text{g} + 50 \, \text{g}} \][/tex]
5. Perform the multiplications:
[tex]\[ T_f = \frac{(1000 + 2000)}{100} \][/tex]
6. Simplify the expression:
[tex]\[ T_f = \frac{3000}{100} \][/tex]
7. Calculate the final temperature:
[tex]\[ T_f = 30^{\circ}\text{C} \][/tex]
Therefore, the final temperature of the mixture will be [tex]\( 30^{\circ}C \)[/tex].
1. Identify the masses and initial temperatures of the water samples:
- Mass of the first sample, [tex]\( m_1 = 50 \)[/tex] grams
- Initial temperature of the first sample, [tex]\( T_{1_{\text{initial}}} = 20^{\circ}C \)[/tex]
- Mass of the second sample, [tex]\( m_2 = 50 \)[/tex] grams
- Initial temperature of the second sample, [tex]\( T_{2_{\text{initial}}} = 40^{\circ}C \)[/tex]
2. Since both water samples have the same specific heat capacity, we can directly use the concept of weighted averages to find the final equilibrium temperature.
3. The final temperature [tex]\( T_f \)[/tex] of the mixture will be a weighted average of the initial temperatures, considering the masses:
[tex]\[ T_f = \frac{m_1 \cdot T_{1_{\text{initial}}} + m_2 \cdot T_{2_{\text{initial}}}}{m_1 + m_2} \][/tex]
4. Substitute the given values into the formula:
[tex]\[ T_f = \frac{(50 \, \text{g} \cdot 20^{\circ}\text{C}) + (50 \, \text{g} \cdot 40^{\circ}\text{C})}{50 \, \text{g} + 50 \, \text{g}} \][/tex]
5. Perform the multiplications:
[tex]\[ T_f = \frac{(1000 + 2000)}{100} \][/tex]
6. Simplify the expression:
[tex]\[ T_f = \frac{3000}{100} \][/tex]
7. Calculate the final temperature:
[tex]\[ T_f = 30^{\circ}\text{C} \][/tex]
Therefore, the final temperature of the mixture will be [tex]\( 30^{\circ}C \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.