Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's determine the residuals to plot on our residual plot step by step.
First, for each data point [tex]\((x, y)\)[/tex], we will find the value of [tex]\(y\)[/tex] predicted by the line of best fit, [tex]\(y_fit\)[/tex], using the equation [tex]\( y = -0.33x + 4.27 \)[/tex]. Then, we will calculate the residuals, which are defined as the difference between the observed [tex]\(y\)[/tex] value and the predicted [tex]\(y_fit\)[/tex] value.
[tex]\[ \text{Residual} = y - y_{\text{fit}} \][/tex]
Let's proceed with each data point:
1. For [tex]\((1, 4.0)\)[/tex]:
- Calculate [tex]\(y_{\text{fit}}\)[/tex]: [tex]\(y_{\text{fit}} = -0.33(1) + 4.27 = 3.94\)[/tex]
- Calculate the residual: Residual [tex]\(= 4.0 - 3.94 = 0.06\)[/tex]
2. For [tex]\((2, 3.3)\)[/tex]:
- Calculate [tex]\(y_{\text{fit}}\)[/tex]: [tex]\(y_{\text{fit}} = -0.33(2) + 4.27 = 3.61\)[/tex]
- Calculate the residual: Residual [tex]\(= 3.3 - 3.61 = -0.31\)[/tex]
3. For [tex]\((3, 3.8)\)[/tex]:
- Calculate [tex]\(y_{\text{fit}}\)[/tex]: [tex]\(y_{\text{fit}} = -0.33(3) + 4.27 = 3.28\)[/tex]
- Calculate the residual: Residual [tex]\(= 3.8 - 3.28 = 0.52\)[/tex]
4. For [tex]\((4, 2.6)\)[/tex]:
- Calculate [tex]\(y_{\text{fit}}\)[/tex]: [tex]\(y_{\text{fit}} = -0.33(4) + 4.27 = 2.95\)[/tex]
- Calculate the residual: Residual [tex]\(= 2.6 - 2.95 = -0.35\)[/tex]
5. For [tex]\((5, 2.7)\)[/tex]:
- Calculate [tex]\(y_{\text{fit}}\)[/tex]: [tex]\(y_{\text{fit}} = -0.33(5) + 4.27 = 2.62\)[/tex]
- Calculate the residual: Residual [tex]\(= 2.7 - 2.62 = 0.08\)[/tex]
Summarizing, the residuals for the given data points are:
[tex]\[ [(1, 0.06), (2, -0.31), (3, 0.52), (4, -0.35), (5, 0.08)] \][/tex]
Therefore, the correct residual plot would consist of the points:
- [tex]\((1, 0.06)\)[/tex]
- [tex]\((2, -0.31)\)[/tex]
- [tex]\((3, 0.52)\)[/tex]
- [tex]\((4, -0.35)\)[/tex]
- [tex]\((5, 0.08)\)[/tex]
These residuals capture how far each actual [tex]\(y\)[/tex] value is from the predicted [tex]\(y\)[/tex] value given by the line of best fit for each [tex]\(x\)[/tex] value.
First, for each data point [tex]\((x, y)\)[/tex], we will find the value of [tex]\(y\)[/tex] predicted by the line of best fit, [tex]\(y_fit\)[/tex], using the equation [tex]\( y = -0.33x + 4.27 \)[/tex]. Then, we will calculate the residuals, which are defined as the difference between the observed [tex]\(y\)[/tex] value and the predicted [tex]\(y_fit\)[/tex] value.
[tex]\[ \text{Residual} = y - y_{\text{fit}} \][/tex]
Let's proceed with each data point:
1. For [tex]\((1, 4.0)\)[/tex]:
- Calculate [tex]\(y_{\text{fit}}\)[/tex]: [tex]\(y_{\text{fit}} = -0.33(1) + 4.27 = 3.94\)[/tex]
- Calculate the residual: Residual [tex]\(= 4.0 - 3.94 = 0.06\)[/tex]
2. For [tex]\((2, 3.3)\)[/tex]:
- Calculate [tex]\(y_{\text{fit}}\)[/tex]: [tex]\(y_{\text{fit}} = -0.33(2) + 4.27 = 3.61\)[/tex]
- Calculate the residual: Residual [tex]\(= 3.3 - 3.61 = -0.31\)[/tex]
3. For [tex]\((3, 3.8)\)[/tex]:
- Calculate [tex]\(y_{\text{fit}}\)[/tex]: [tex]\(y_{\text{fit}} = -0.33(3) + 4.27 = 3.28\)[/tex]
- Calculate the residual: Residual [tex]\(= 3.8 - 3.28 = 0.52\)[/tex]
4. For [tex]\((4, 2.6)\)[/tex]:
- Calculate [tex]\(y_{\text{fit}}\)[/tex]: [tex]\(y_{\text{fit}} = -0.33(4) + 4.27 = 2.95\)[/tex]
- Calculate the residual: Residual [tex]\(= 2.6 - 2.95 = -0.35\)[/tex]
5. For [tex]\((5, 2.7)\)[/tex]:
- Calculate [tex]\(y_{\text{fit}}\)[/tex]: [tex]\(y_{\text{fit}} = -0.33(5) + 4.27 = 2.62\)[/tex]
- Calculate the residual: Residual [tex]\(= 2.7 - 2.62 = 0.08\)[/tex]
Summarizing, the residuals for the given data points are:
[tex]\[ [(1, 0.06), (2, -0.31), (3, 0.52), (4, -0.35), (5, 0.08)] \][/tex]
Therefore, the correct residual plot would consist of the points:
- [tex]\((1, 0.06)\)[/tex]
- [tex]\((2, -0.31)\)[/tex]
- [tex]\((3, 0.52)\)[/tex]
- [tex]\((4, -0.35)\)[/tex]
- [tex]\((5, 0.08)\)[/tex]
These residuals capture how far each actual [tex]\(y\)[/tex] value is from the predicted [tex]\(y\)[/tex] value given by the line of best fit for each [tex]\(x\)[/tex] value.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.