Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Simplify the expression:

[tex]\[
\frac{(n-4)!}{3!(n-2)!}
\][/tex]


Sagot :

To simplify the expression [tex]\(\frac{(n-4)!}{3!(n-2)!}\)[/tex] and evaluate it for [tex]\(n = 6\)[/tex], follow these steps:

1. Expression Analysis:
- The given expression is [tex]\(\frac{(n-4)!}{3!(n-2)!}\)[/tex].
- Recall that the factorial function [tex]\(k!\)[/tex] represents the product of all positive integers up to [tex]\(k\)[/tex].

2. Rewrite the Factorials:
- Notice that [tex]\((n-2)!\)[/tex] can be expanded as [tex]\((n-2)! = (n-2)(n-3)(n-4)!\)[/tex].
- Substitute this expanded form into the original expression:
[tex]\[ \frac{(n-4)!}{3!(n-2)!} = \frac{(n-4)!}{3! \cdot (n-2)(n-3)(n-4)!} \][/tex]

3. Cancel Common Terms:
- The [tex]\((n-4)!\)[/tex] in the numerator and denominator cancel each other:
[tex]\[ \frac{(n-4)!}{3! \cdot (n-2)(n-3)(n-4)!} = \frac{1}{3! \cdot (n-2)(n-3)} \][/tex]

4. Simplify the Constant Factorial:
- Evaluate [tex]\(3!\)[/tex]:
[tex]\[ 3! = 3 \cdot 2 \cdot 1 = 6 \][/tex]
- Substitute [tex]\(3!\)[/tex] with 6 in the expression:
[tex]\[ \frac{1}{6 \cdot (n-2)(n-3)} \][/tex]

5. Thus, the simplified form of the expression is:
[tex]\[ \frac{1}{6(n-2)(n-3)} \][/tex]

6. Evaluate the Expression for [tex]\(n = 6\)[/tex]:
- Substitute [tex]\(n = 6\)[/tex] into the simplified expression:
[tex]\[ \frac{1}{6(6-2)(6-3)} = \frac{1}{6 \cdot 4 \cdot 3} = \frac{1}{72} \][/tex]

7. Conclusion:
- The simplified form of the given expression is:
[tex]\[ \frac{1}{6(n-3)(n-2)} \][/tex]
- When [tex]\(n = 6\)[/tex], the value of the expression is:
[tex]\[ \frac{1}{72} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.