At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's go through the problem step-by-step to find the decay constant and the activity rate.
### Step 1: Understand the given values
- Number of atoms ([tex]\( N \)[/tex]) = [tex]\( 10^{12} \)[/tex]
- Half-life ([tex]\( t_{1/2} \)[/tex]) = 15 days
### Step 2: Calculate the decay constant
The decay constant ([tex]\( \lambda \)[/tex]) is related to the half-life by the formula:
[tex]\[ \lambda = \frac{\ln(2)}{t_{1/2}} \][/tex]
Where:
- [tex]\( \ln(2) \)[/tex] is the natural logarithm of 2 (approximately 0.693).
- [tex]\( t_{1/2} \)[/tex] is the half-life.
So,
[tex]\[ \lambda = \frac{0.693}{15} \approx 0.046209812037329684 \, \text{days}^{-1} \][/tex]
### Step 3: Calculate the activity rate
The activity rate ([tex]\( A \)[/tex]) is given by the formula:
[tex]\[ A = \lambda \cdot N \][/tex]
Where:
- [tex]\( \lambda \)[/tex] is the decay constant.
- [tex]\( N \)[/tex] is the number of atoms.
Thus,
[tex]\[ A = 0.046209812037329684 \times 10^{12} \approx 46209812037.32968 \, \text{decays per day} \][/tex]
### Conclusion
- The decay constant ([tex]\( \lambda \)[/tex]) is approximately [tex]\( 0.046209812037329684 \, \text{days}^{-1} \)[/tex].
- The activity rate ([tex]\( A \)[/tex]) is approximately [tex]\( 46209812037.32968 \, \text{decays per day} \)[/tex].
So, the material with [tex]\( 10^{12} \)[/tex] atoms and a half-life of 15 days has an activity rate of around [tex]\( 46209812037.32968 \)[/tex] decays per day.
### Step 1: Understand the given values
- Number of atoms ([tex]\( N \)[/tex]) = [tex]\( 10^{12} \)[/tex]
- Half-life ([tex]\( t_{1/2} \)[/tex]) = 15 days
### Step 2: Calculate the decay constant
The decay constant ([tex]\( \lambda \)[/tex]) is related to the half-life by the formula:
[tex]\[ \lambda = \frac{\ln(2)}{t_{1/2}} \][/tex]
Where:
- [tex]\( \ln(2) \)[/tex] is the natural logarithm of 2 (approximately 0.693).
- [tex]\( t_{1/2} \)[/tex] is the half-life.
So,
[tex]\[ \lambda = \frac{0.693}{15} \approx 0.046209812037329684 \, \text{days}^{-1} \][/tex]
### Step 3: Calculate the activity rate
The activity rate ([tex]\( A \)[/tex]) is given by the formula:
[tex]\[ A = \lambda \cdot N \][/tex]
Where:
- [tex]\( \lambda \)[/tex] is the decay constant.
- [tex]\( N \)[/tex] is the number of atoms.
Thus,
[tex]\[ A = 0.046209812037329684 \times 10^{12} \approx 46209812037.32968 \, \text{decays per day} \][/tex]
### Conclusion
- The decay constant ([tex]\( \lambda \)[/tex]) is approximately [tex]\( 0.046209812037329684 \, \text{days}^{-1} \)[/tex].
- The activity rate ([tex]\( A \)[/tex]) is approximately [tex]\( 46209812037.32968 \, \text{decays per day} \)[/tex].
So, the material with [tex]\( 10^{12} \)[/tex] atoms and a half-life of 15 days has an activity rate of around [tex]\( 46209812037.32968 \)[/tex] decays per day.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.