Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's go through the problem step-by-step to find the decay constant and the activity rate.
### Step 1: Understand the given values
- Number of atoms ([tex]\( N \)[/tex]) = [tex]\( 10^{12} \)[/tex]
- Half-life ([tex]\( t_{1/2} \)[/tex]) = 15 days
### Step 2: Calculate the decay constant
The decay constant ([tex]\( \lambda \)[/tex]) is related to the half-life by the formula:
[tex]\[ \lambda = \frac{\ln(2)}{t_{1/2}} \][/tex]
Where:
- [tex]\( \ln(2) \)[/tex] is the natural logarithm of 2 (approximately 0.693).
- [tex]\( t_{1/2} \)[/tex] is the half-life.
So,
[tex]\[ \lambda = \frac{0.693}{15} \approx 0.046209812037329684 \, \text{days}^{-1} \][/tex]
### Step 3: Calculate the activity rate
The activity rate ([tex]\( A \)[/tex]) is given by the formula:
[tex]\[ A = \lambda \cdot N \][/tex]
Where:
- [tex]\( \lambda \)[/tex] is the decay constant.
- [tex]\( N \)[/tex] is the number of atoms.
Thus,
[tex]\[ A = 0.046209812037329684 \times 10^{12} \approx 46209812037.32968 \, \text{decays per day} \][/tex]
### Conclusion
- The decay constant ([tex]\( \lambda \)[/tex]) is approximately [tex]\( 0.046209812037329684 \, \text{days}^{-1} \)[/tex].
- The activity rate ([tex]\( A \)[/tex]) is approximately [tex]\( 46209812037.32968 \, \text{decays per day} \)[/tex].
So, the material with [tex]\( 10^{12} \)[/tex] atoms and a half-life of 15 days has an activity rate of around [tex]\( 46209812037.32968 \)[/tex] decays per day.
### Step 1: Understand the given values
- Number of atoms ([tex]\( N \)[/tex]) = [tex]\( 10^{12} \)[/tex]
- Half-life ([tex]\( t_{1/2} \)[/tex]) = 15 days
### Step 2: Calculate the decay constant
The decay constant ([tex]\( \lambda \)[/tex]) is related to the half-life by the formula:
[tex]\[ \lambda = \frac{\ln(2)}{t_{1/2}} \][/tex]
Where:
- [tex]\( \ln(2) \)[/tex] is the natural logarithm of 2 (approximately 0.693).
- [tex]\( t_{1/2} \)[/tex] is the half-life.
So,
[tex]\[ \lambda = \frac{0.693}{15} \approx 0.046209812037329684 \, \text{days}^{-1} \][/tex]
### Step 3: Calculate the activity rate
The activity rate ([tex]\( A \)[/tex]) is given by the formula:
[tex]\[ A = \lambda \cdot N \][/tex]
Where:
- [tex]\( \lambda \)[/tex] is the decay constant.
- [tex]\( N \)[/tex] is the number of atoms.
Thus,
[tex]\[ A = 0.046209812037329684 \times 10^{12} \approx 46209812037.32968 \, \text{decays per day} \][/tex]
### Conclusion
- The decay constant ([tex]\( \lambda \)[/tex]) is approximately [tex]\( 0.046209812037329684 \, \text{days}^{-1} \)[/tex].
- The activity rate ([tex]\( A \)[/tex]) is approximately [tex]\( 46209812037.32968 \, \text{decays per day} \)[/tex].
So, the material with [tex]\( 10^{12} \)[/tex] atoms and a half-life of 15 days has an activity rate of around [tex]\( 46209812037.32968 \)[/tex] decays per day.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.