Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's use Newton's Method step by step to approximate a zero of the function [tex]\( f(x) = x^2 - 2 \)[/tex] with the given initial guess [tex]\( x_1 = 1.4 \)[/tex].
Newton’s Method is defined by the formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
### Step-by-Step Calculation:
#### Iteration 1
Let's start with the initial guess [tex]\( x_1 = 1.4 \)[/tex].
1. Calculate [tex]\( f(x_1) \)[/tex]:
[tex]\[ f(x_1) = (1.4)^2 - 2 = 1.96 - 2 = -0.04 \][/tex]
2. Calculate [tex]\( f'(x_1) \)[/tex] (the derivative of [tex]\( f(x) \)[/tex] at [tex]\( x_1 \)[/tex]):
[tex]\[ f'(x_1) = 2 \times 1.4 = 2.8 \][/tex]
3. Update [tex]\( x_2 \)[/tex] using Newton's Method:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.4 - \frac{-0.04}{2.8} = 1.4 + 0.0142857143 \approx 1.4143 \][/tex]
So, after the first iteration, [tex]\( x_2 \approx 1.4143 \)[/tex].
#### Iteration 2
Now, using [tex]\( x_2 = 1.4143 \)[/tex]:
1. Calculate [tex]\( f(x_2) \)[/tex]:
[tex]\[ f(x_2) = (1.4143)^2 - 2 \approx 2.00004049 - 2 \approx 0.00004049 \][/tex]
2. Calculate [tex]\( f'(x_2) \)[/tex]:
[tex]\[ f'(x_2) = 2 \times 1.4143 = 2.8286 \][/tex]
3. Update [tex]\( x_3 \)[/tex] using Newton's Method:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.4143 - \frac{0.00004049}{2.8286} \approx 1.4143 - 0.00001434 \approx 1.4142 \][/tex]
So, after the second iteration, [tex]\( x_3 \approx 1.4142 \)[/tex].
### Summary of Results
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline n & x & & f(x_n) & f^{\prime}(x_n) & \frac{f(x_n)}{f^{\prime}(x_n)} & x_n - \frac{f(x_n)}{f^{\prime}(x_n)} \\ \hline 1 & 1.4 & & -0.04 & 2.8 & -0.0143 & 1.4143 \\ \hline 2 & 1.4143 & & 0.00004049 & 2.8286 & 0.00001434 & 1.4142 \\ \hline \end{array} \][/tex]
Thus, after two iterations of Newton's Method, the approximations are [tex]\( x_2 \approx 1.4143 \)[/tex] and [tex]\( x_3 \approx 1.4142 \)[/tex].
Newton’s Method is defined by the formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
### Step-by-Step Calculation:
#### Iteration 1
Let's start with the initial guess [tex]\( x_1 = 1.4 \)[/tex].
1. Calculate [tex]\( f(x_1) \)[/tex]:
[tex]\[ f(x_1) = (1.4)^2 - 2 = 1.96 - 2 = -0.04 \][/tex]
2. Calculate [tex]\( f'(x_1) \)[/tex] (the derivative of [tex]\( f(x) \)[/tex] at [tex]\( x_1 \)[/tex]):
[tex]\[ f'(x_1) = 2 \times 1.4 = 2.8 \][/tex]
3. Update [tex]\( x_2 \)[/tex] using Newton's Method:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.4 - \frac{-0.04}{2.8} = 1.4 + 0.0142857143 \approx 1.4143 \][/tex]
So, after the first iteration, [tex]\( x_2 \approx 1.4143 \)[/tex].
#### Iteration 2
Now, using [tex]\( x_2 = 1.4143 \)[/tex]:
1. Calculate [tex]\( f(x_2) \)[/tex]:
[tex]\[ f(x_2) = (1.4143)^2 - 2 \approx 2.00004049 - 2 \approx 0.00004049 \][/tex]
2. Calculate [tex]\( f'(x_2) \)[/tex]:
[tex]\[ f'(x_2) = 2 \times 1.4143 = 2.8286 \][/tex]
3. Update [tex]\( x_3 \)[/tex] using Newton's Method:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.4143 - \frac{0.00004049}{2.8286} \approx 1.4143 - 0.00001434 \approx 1.4142 \][/tex]
So, after the second iteration, [tex]\( x_3 \approx 1.4142 \)[/tex].
### Summary of Results
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline n & x & & f(x_n) & f^{\prime}(x_n) & \frac{f(x_n)}{f^{\prime}(x_n)} & x_n - \frac{f(x_n)}{f^{\prime}(x_n)} \\ \hline 1 & 1.4 & & -0.04 & 2.8 & -0.0143 & 1.4143 \\ \hline 2 & 1.4143 & & 0.00004049 & 2.8286 & 0.00001434 & 1.4142 \\ \hline \end{array} \][/tex]
Thus, after two iterations of Newton's Method, the approximations are [tex]\( x_2 \approx 1.4143 \)[/tex] and [tex]\( x_3 \approx 1.4142 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.