Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's use Newton's Method step by step to approximate a zero of the function [tex]\( f(x) = x^2 - 2 \)[/tex] with the given initial guess [tex]\( x_1 = 1.4 \)[/tex].
Newton’s Method is defined by the formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
### Step-by-Step Calculation:
#### Iteration 1
Let's start with the initial guess [tex]\( x_1 = 1.4 \)[/tex].
1. Calculate [tex]\( f(x_1) \)[/tex]:
[tex]\[ f(x_1) = (1.4)^2 - 2 = 1.96 - 2 = -0.04 \][/tex]
2. Calculate [tex]\( f'(x_1) \)[/tex] (the derivative of [tex]\( f(x) \)[/tex] at [tex]\( x_1 \)[/tex]):
[tex]\[ f'(x_1) = 2 \times 1.4 = 2.8 \][/tex]
3. Update [tex]\( x_2 \)[/tex] using Newton's Method:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.4 - \frac{-0.04}{2.8} = 1.4 + 0.0142857143 \approx 1.4143 \][/tex]
So, after the first iteration, [tex]\( x_2 \approx 1.4143 \)[/tex].
#### Iteration 2
Now, using [tex]\( x_2 = 1.4143 \)[/tex]:
1. Calculate [tex]\( f(x_2) \)[/tex]:
[tex]\[ f(x_2) = (1.4143)^2 - 2 \approx 2.00004049 - 2 \approx 0.00004049 \][/tex]
2. Calculate [tex]\( f'(x_2) \)[/tex]:
[tex]\[ f'(x_2) = 2 \times 1.4143 = 2.8286 \][/tex]
3. Update [tex]\( x_3 \)[/tex] using Newton's Method:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.4143 - \frac{0.00004049}{2.8286} \approx 1.4143 - 0.00001434 \approx 1.4142 \][/tex]
So, after the second iteration, [tex]\( x_3 \approx 1.4142 \)[/tex].
### Summary of Results
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline n & x & & f(x_n) & f^{\prime}(x_n) & \frac{f(x_n)}{f^{\prime}(x_n)} & x_n - \frac{f(x_n)}{f^{\prime}(x_n)} \\ \hline 1 & 1.4 & & -0.04 & 2.8 & -0.0143 & 1.4143 \\ \hline 2 & 1.4143 & & 0.00004049 & 2.8286 & 0.00001434 & 1.4142 \\ \hline \end{array} \][/tex]
Thus, after two iterations of Newton's Method, the approximations are [tex]\( x_2 \approx 1.4143 \)[/tex] and [tex]\( x_3 \approx 1.4142 \)[/tex].
Newton’s Method is defined by the formula:
[tex]\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \][/tex]
### Step-by-Step Calculation:
#### Iteration 1
Let's start with the initial guess [tex]\( x_1 = 1.4 \)[/tex].
1. Calculate [tex]\( f(x_1) \)[/tex]:
[tex]\[ f(x_1) = (1.4)^2 - 2 = 1.96 - 2 = -0.04 \][/tex]
2. Calculate [tex]\( f'(x_1) \)[/tex] (the derivative of [tex]\( f(x) \)[/tex] at [tex]\( x_1 \)[/tex]):
[tex]\[ f'(x_1) = 2 \times 1.4 = 2.8 \][/tex]
3. Update [tex]\( x_2 \)[/tex] using Newton's Method:
[tex]\[ x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1.4 - \frac{-0.04}{2.8} = 1.4 + 0.0142857143 \approx 1.4143 \][/tex]
So, after the first iteration, [tex]\( x_2 \approx 1.4143 \)[/tex].
#### Iteration 2
Now, using [tex]\( x_2 = 1.4143 \)[/tex]:
1. Calculate [tex]\( f(x_2) \)[/tex]:
[tex]\[ f(x_2) = (1.4143)^2 - 2 \approx 2.00004049 - 2 \approx 0.00004049 \][/tex]
2. Calculate [tex]\( f'(x_2) \)[/tex]:
[tex]\[ f'(x_2) = 2 \times 1.4143 = 2.8286 \][/tex]
3. Update [tex]\( x_3 \)[/tex] using Newton's Method:
[tex]\[ x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 1.4143 - \frac{0.00004049}{2.8286} \approx 1.4143 - 0.00001434 \approx 1.4142 \][/tex]
So, after the second iteration, [tex]\( x_3 \approx 1.4142 \)[/tex].
### Summary of Results
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline n & x & & f(x_n) & f^{\prime}(x_n) & \frac{f(x_n)}{f^{\prime}(x_n)} & x_n - \frac{f(x_n)}{f^{\prime}(x_n)} \\ \hline 1 & 1.4 & & -0.04 & 2.8 & -0.0143 & 1.4143 \\ \hline 2 & 1.4143 & & 0.00004049 & 2.8286 & 0.00001434 & 1.4142 \\ \hline \end{array} \][/tex]
Thus, after two iterations of Newton's Method, the approximations are [tex]\( x_2 \approx 1.4143 \)[/tex] and [tex]\( x_3 \approx 1.4142 \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.