Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To factor the polynomial [tex]\(10x^3 + 3x^2 - 20x - 6\)[/tex] by grouping, follow these steps carefully:
1. Look at the polynomial and split it into two groups:
[tex]\[ \left(10x^3 + 3x^2\right) + \left(-20x - 6\right) \][/tex]
2. Factor out the common factor from each group:
- In the first group [tex]\(\left(10x^3 + 3x^2\right)\)[/tex], the common factor is [tex]\(x^2\)[/tex]:
[tex]\[ 10x^3 + 3x^2 = x^2(10x + 3) \][/tex]
- In the second group [tex]\(\left(-20x - 6\right)\)[/tex], the common factor is [tex]\(-2\)[/tex]:
[tex]\[ -20x - 6 = -2(10x + 3) \][/tex]
3. Write the polynomial grouping with the common factors factored out:
[tex]\[ x^2(10x + 3) - 2(10x + 3) \][/tex]
Given the choices provided:
1. [tex]\(x^2\)[/tex] and [tex]\(-2x\)[/tex]
2. [tex]\(2x^2\)[/tex] and [tex]\(-2x\)[/tex]
3. [tex]\(x^2\)[/tex] and [tex]\(-2\)[/tex]
4. [tex]\(2x^2\)[/tex] and [tex]\(-2\)[/tex]
The correct common factors to use in the next step of factoring are:
[tex]\[ x^2 \text{ and } -2 \][/tex]
1. Look at the polynomial and split it into two groups:
[tex]\[ \left(10x^3 + 3x^2\right) + \left(-20x - 6\right) \][/tex]
2. Factor out the common factor from each group:
- In the first group [tex]\(\left(10x^3 + 3x^2\right)\)[/tex], the common factor is [tex]\(x^2\)[/tex]:
[tex]\[ 10x^3 + 3x^2 = x^2(10x + 3) \][/tex]
- In the second group [tex]\(\left(-20x - 6\right)\)[/tex], the common factor is [tex]\(-2\)[/tex]:
[tex]\[ -20x - 6 = -2(10x + 3) \][/tex]
3. Write the polynomial grouping with the common factors factored out:
[tex]\[ x^2(10x + 3) - 2(10x + 3) \][/tex]
Given the choices provided:
1. [tex]\(x^2\)[/tex] and [tex]\(-2x\)[/tex]
2. [tex]\(2x^2\)[/tex] and [tex]\(-2x\)[/tex]
3. [tex]\(x^2\)[/tex] and [tex]\(-2\)[/tex]
4. [tex]\(2x^2\)[/tex] and [tex]\(-2\)[/tex]
The correct common factors to use in the next step of factoring are:
[tex]\[ x^2 \text{ and } -2 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.