Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the greatest common factor (GCF) of the expressions [tex]\(8m\)[/tex], [tex]\(36m^3\)[/tex], and [tex]\(12\)[/tex], we need to examine both the numerical coefficients and the variable parts separately.
### Step 1: Finding the GCF of the coefficients
First, let's identify the numerical coefficients of each term:
- The coefficient of [tex]\(8m\)[/tex] is 8.
- The coefficient of [tex]\(36m^3\)[/tex] is 36.
- The coefficient of [tex]\(12\)[/tex] is 12.
We need to determine the GCF of these three numbers: 8, 36, and 12.
### Step 2: Prime factorization of the coefficients
Let's factorize each number into its prime factors:
- [tex]\(8 = 2 \times 2 \times 2 = 2^3\)[/tex]
- [tex]\(36 = 2 \times 2 \times 3 \times 3 = 2^2 \times 3^2\)[/tex]
- [tex]\(12 = 2 \times 2 \times 3 = 2^2 \times 3\)[/tex]
### Step 3: Finding the common factors
Now, we take the lowest powers of all common prime factors between them:
- The lowest power of 2 common to all three numbers is [tex]\(2^2\)[/tex], which is 4.
- The lowest power of 3 present is [tex]\(3^0\)[/tex], which is 1 since it is absent in 8 but present in 36 and 12.
Thus, the GCF of the coefficients 8, 36, and 12 is [tex]\(2^2 = 4\)[/tex].
### Step 4: Considering the variable part
Only two of the terms, [tex]\(8m\)[/tex] and [tex]\(36m^3\)[/tex], contain the variable [tex]\(m\)[/tex].
For the variable part:
- [tex]\(8m\)[/tex] has [tex]\(m^1\)[/tex].
- [tex]\(36m^3\)[/tex] has [tex]\(m^3\)[/tex].
- [tex]\(12\)[/tex] has no [tex]\(m\)[/tex] (which we can think of as [tex]\(m^0\)[/tex]).
Since [tex]\(m\)[/tex] must be present in the GCF between all three terms, and one of the terms [tex]\(12\)[/tex] has no [tex]\(m\)[/tex], the variable [tex]\(m\)[/tex] cannot be part of the GCF of all three terms.
### Step 5: Conclusion
Combining the results from the numerical part and the variable part, the greatest common factor of [tex]\(8m\)[/tex], [tex]\(36m^3\)[/tex], and [tex]\(12\)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
### Step 1: Finding the GCF of the coefficients
First, let's identify the numerical coefficients of each term:
- The coefficient of [tex]\(8m\)[/tex] is 8.
- The coefficient of [tex]\(36m^3\)[/tex] is 36.
- The coefficient of [tex]\(12\)[/tex] is 12.
We need to determine the GCF of these three numbers: 8, 36, and 12.
### Step 2: Prime factorization of the coefficients
Let's factorize each number into its prime factors:
- [tex]\(8 = 2 \times 2 \times 2 = 2^3\)[/tex]
- [tex]\(36 = 2 \times 2 \times 3 \times 3 = 2^2 \times 3^2\)[/tex]
- [tex]\(12 = 2 \times 2 \times 3 = 2^2 \times 3\)[/tex]
### Step 3: Finding the common factors
Now, we take the lowest powers of all common prime factors between them:
- The lowest power of 2 common to all three numbers is [tex]\(2^2\)[/tex], which is 4.
- The lowest power of 3 present is [tex]\(3^0\)[/tex], which is 1 since it is absent in 8 but present in 36 and 12.
Thus, the GCF of the coefficients 8, 36, and 12 is [tex]\(2^2 = 4\)[/tex].
### Step 4: Considering the variable part
Only two of the terms, [tex]\(8m\)[/tex] and [tex]\(36m^3\)[/tex], contain the variable [tex]\(m\)[/tex].
For the variable part:
- [tex]\(8m\)[/tex] has [tex]\(m^1\)[/tex].
- [tex]\(36m^3\)[/tex] has [tex]\(m^3\)[/tex].
- [tex]\(12\)[/tex] has no [tex]\(m\)[/tex] (which we can think of as [tex]\(m^0\)[/tex]).
Since [tex]\(m\)[/tex] must be present in the GCF between all three terms, and one of the terms [tex]\(12\)[/tex] has no [tex]\(m\)[/tex], the variable [tex]\(m\)[/tex] cannot be part of the GCF of all three terms.
### Step 5: Conclusion
Combining the results from the numerical part and the variable part, the greatest common factor of [tex]\(8m\)[/tex], [tex]\(36m^3\)[/tex], and [tex]\(12\)[/tex] is:
[tex]\[ \boxed{4} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.