Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine whether the events "being from California" and "preferring brand A" are independent, we need to compare two probabilities:
1. The probability of being from California, [tex]\( P(\text{California}) \)[/tex].
2. The conditional probability of being from California given that the person prefers brand A, [tex]\( P(\text{California} \mid \text{Brand A}) \)[/tex].
Step 1: Calculate [tex]\( P(\text{California}) \)[/tex]
The total number of people surveyed is 275, and the number of people from California is 150. Therefore, the probability of being from California is:
[tex]\[ P(\text{California}) = \frac{\text{Number of people from California}}{\text{Total number of people}} = \frac{150}{275} \][/tex]
Simplifying this fraction:
[tex]\[ P(\text{California}) = \frac{150}{275} \approx 0.545 \][/tex]
Step 2: Calculate [tex]\( P(\text{California} \mid \text{Brand A}) \)[/tex]
Next, we need to find the conditional probability that a person is from California given they prefer brand A. This is given by the ratio of the number of people from California who prefer brand A to the total number of people who prefer brand A. According to the table, 96 people from California prefer brand A out of a total of 176 people who prefer brand A.
[tex]\[ P(\text{California} \mid \text{Brand A}) = \frac{\text{Number of people from California who prefer Brand A}}{\text{Total number of people who prefer Brand A}} = \frac{96}{176} \][/tex]
Simplifying this fraction:
[tex]\[ P(\text{California} \mid \text{Brand A}) = \frac{96}{176} \approx 0.545 \][/tex]
Step 3: Determine Dependence or Independence
For two events to be independent, the probability of one event must be equal to the conditional probability given the other event. In other words, [tex]\( P(\text{California}) \)[/tex] should equal [tex]\( P(\text{California} \mid \text{Brand A}) \)[/tex].
From the calculations:
[tex]\[ P(\text{California}) \approx 0.545 \][/tex]
[tex]\[ P(\text{California} \mid \text{Brand A}) \approx 0.545 \][/tex]
Since these two probabilities are approximately equal, the two events being from California and preferring Brand A are independent.
Therefore, the correct answer is:
B. Yes, they are independent because [tex]\( P(\text{California}) \approx 0.55 \)[/tex] and [tex]\( P(\text{California} \mid \text{Brand A}) \approx 0.55 \)[/tex].
1. The probability of being from California, [tex]\( P(\text{California}) \)[/tex].
2. The conditional probability of being from California given that the person prefers brand A, [tex]\( P(\text{California} \mid \text{Brand A}) \)[/tex].
Step 1: Calculate [tex]\( P(\text{California}) \)[/tex]
The total number of people surveyed is 275, and the number of people from California is 150. Therefore, the probability of being from California is:
[tex]\[ P(\text{California}) = \frac{\text{Number of people from California}}{\text{Total number of people}} = \frac{150}{275} \][/tex]
Simplifying this fraction:
[tex]\[ P(\text{California}) = \frac{150}{275} \approx 0.545 \][/tex]
Step 2: Calculate [tex]\( P(\text{California} \mid \text{Brand A}) \)[/tex]
Next, we need to find the conditional probability that a person is from California given they prefer brand A. This is given by the ratio of the number of people from California who prefer brand A to the total number of people who prefer brand A. According to the table, 96 people from California prefer brand A out of a total of 176 people who prefer brand A.
[tex]\[ P(\text{California} \mid \text{Brand A}) = \frac{\text{Number of people from California who prefer Brand A}}{\text{Total number of people who prefer Brand A}} = \frac{96}{176} \][/tex]
Simplifying this fraction:
[tex]\[ P(\text{California} \mid \text{Brand A}) = \frac{96}{176} \approx 0.545 \][/tex]
Step 3: Determine Dependence or Independence
For two events to be independent, the probability of one event must be equal to the conditional probability given the other event. In other words, [tex]\( P(\text{California}) \)[/tex] should equal [tex]\( P(\text{California} \mid \text{Brand A}) \)[/tex].
From the calculations:
[tex]\[ P(\text{California}) \approx 0.545 \][/tex]
[tex]\[ P(\text{California} \mid \text{Brand A}) \approx 0.545 \][/tex]
Since these two probabilities are approximately equal, the two events being from California and preferring Brand A are independent.
Therefore, the correct answer is:
B. Yes, they are independent because [tex]\( P(\text{California}) \approx 0.55 \)[/tex] and [tex]\( P(\text{California} \mid \text{Brand A}) \approx 0.55 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.