Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Which function increases at the fastest rate between [tex]x=0[/tex] and [tex]x=8[/tex]?

Linear Function
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{[tex]$f(x)=2x+2$[/tex]} \\
\hline [tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline 0 & 2 \\
\hline 2 & 6 \\
\hline 4 & 10 \\
\hline 6 & 14 \\
\hline 8 & 18 \\
\hline
\end{tabular}

Exponential Function
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{[tex]$f(x)=2^x+2$[/tex]} \\
\hline [tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline 0 & 3 \\
\hline 2 & 6 \\
\hline 4 & 18 \\
\hline 6 & 66 \\
\hline 8 & 258 \\
\hline
\end{tabular}

Sagot :

To determine which function increases at the fastest rate between [tex]\(x=0\)[/tex] and [tex]\(x=8\)[/tex], we'll analyze the differences between consecutive values for both functions.

### Linear Function [tex]\(f(x) = 2x + 2\)[/tex]

We evaluate the linear function at points from 0 to 8:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 0 & 2 \\ 1 & 4 \\ 2 & 6 \\ 3 & 8 \\ 4 & 10 \\ 5 & 12 \\ 6 & 14 \\ 7 & 16 \\ 8 & 18 \\ \hline \end{array} \][/tex]

Next, we calculate the differences between consecutive [tex]\(f(x)\)[/tex] values:

[tex]\[ \begin{array}{|c|c|} \hline \text{Interval} & \text{Difference} \\ \hline 1-0 & f(1) - f(0) = 4 - 2 = 2 \\ 2-1 & f(2) - f(1) = 6 - 4 = 2 \\ 3-2 & f(3) - f(2) = 8 - 6 = 2 \\ 4-3 & f(4) - f(3) = 10 - 8 = 2 \\ 5-4 & f(5) - f(4) = 12 - 10 = 2 \\ 6-5 & f(6) - f(5) = 14 - 12 = 2 \\ 7-6 & f(7) - f(6) = 16 - 14 = 2 \\ 8-7 & f(8) - f(7) = 18 - 16 = 2 \\ \hline \end{array} \][/tex]

All differences for the linear function are equal to 2. Therefore, the maximum difference for the linear function is:

[tex]\[ \max_{\text{linear}} = 2 \][/tex]

### Exponential Function [tex]\(f(x) = 2^x + 2\)[/tex]

Now we evaluate the exponential function at points from 0 to 8:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 0 & 3 \\ 1 & 4 \\ 2 & 6 \\ 3 & 10 \\ 4 & 18 \\ 5 & 34 \\ 6 & 66 \\ 7 & 130 \\ 8 & 258 \\ \hline \end{array} \][/tex]

Next, we calculate the differences between consecutive [tex]\(f(x)\)[/tex] values:

[tex]\[ \begin{array}{|c|c|} \hline \text{Interval} & \text{Difference} \\ \hline 1-0 & f(1) - f(0) = 4 - 3 = 1 \\ 2-1 & f(2) - f(1) = 6 - 4 = 2 \\ 3-2 & f(3) - f(2) = 10 - 6 = 4 \\ 4-3 & f(4) - f(3) = 18 - 10 = 8 \\ 5-4 & f(5) - f(4) = 34 - 18 = 16 \\ 6-5 & f(6) - f(5) = 66 - 34 = 32 \\ 7-6 & f(7) - f(6) = 130 - 66 = 64 \\ 8-7 & f(8) - f(7) = 258 - 130 = 128 \\ \hline \end{array} \][/tex]

The differences for the exponential function vary, with the maximum difference being 128. Therefore, the maximum difference for the exponential function is:

[tex]\[ \max_{\text{exponential}} = 128 \][/tex]

### Conclusion

Since the maximum difference for the linear function is 2 and the maximum difference for the exponential function is 128, the exponential function [tex]\(f(x) = 2^x + 2\)[/tex] increases at the fastest rate between [tex]\(x = 0\)[/tex] and [tex]\(x = 8\)[/tex].