At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's address each part of the question step-by-step.
### Part (a):
You need to find the equation of a straight line with a given gradient (slope) and y-intercept.
1. Gradient (Slope): The gradient is given as [tex]\(3\)[/tex].
2. Y-intercept: The y-intercept is given as [tex]\(-4\)[/tex].
The general form of the equation of a straight line is:
[tex]\[ y = mx + c \][/tex]
where:
- [tex]\(m\)[/tex] is the gradient
- [tex]\(c\)[/tex] is the y-intercept
Plugging in the given values, we get:
[tex]\[ y = 3x + (-4) \][/tex]
So, the equation of the line for part (a) is:
[tex]\[ y = 3x - 4 \][/tex]
### Part (b):
You need to find the equation of a straight line with a given angle of inclination and y-intercept.
1. Angle of Inclination: The angle of inclination is given as [tex]\(135^\circ\)[/tex].
2. Y-intercept: The y-intercept is given as [tex]\(5\)[/tex].
The gradient of a line can be found using the tangent of the angle of inclination:
[tex]\[ m = \tan(\theta) \][/tex]
where:
- [tex]\(\theta\)[/tex] is the angle of inclination.
For [tex]\(\theta = 135^\circ\)[/tex]:
[tex]\[ m = \tan(135^\circ) \][/tex]
The value of [tex]\(\tan(135^\circ)\)[/tex] is [tex]\(-1.0000000000000002\)[/tex] (which is approximately [tex]\(-1\)[/tex]).
The general form of the equation of a straight line is:
[tex]\[ y = mx + c \][/tex]
Plugging in the calculated gradient and the given y-intercept, we get:
[tex]\[ y = -1.0000000000000002x + 5 \][/tex]
So, the equation of the line for part (b) is:
[tex]\[ y = -1.0000000000000002x + 5 \][/tex]
To summarize:
- The equation of the line with a gradient of 3 and a y-intercept of -4 is:
[tex]\[ y = 3x - 4 \][/tex]
- The equation of the line with an angle of inclination of 135° and a y-intercept of 5 is:
[tex]\[ y = -1.0000000000000002x + 5 \][/tex]
### Part (a):
You need to find the equation of a straight line with a given gradient (slope) and y-intercept.
1. Gradient (Slope): The gradient is given as [tex]\(3\)[/tex].
2. Y-intercept: The y-intercept is given as [tex]\(-4\)[/tex].
The general form of the equation of a straight line is:
[tex]\[ y = mx + c \][/tex]
where:
- [tex]\(m\)[/tex] is the gradient
- [tex]\(c\)[/tex] is the y-intercept
Plugging in the given values, we get:
[tex]\[ y = 3x + (-4) \][/tex]
So, the equation of the line for part (a) is:
[tex]\[ y = 3x - 4 \][/tex]
### Part (b):
You need to find the equation of a straight line with a given angle of inclination and y-intercept.
1. Angle of Inclination: The angle of inclination is given as [tex]\(135^\circ\)[/tex].
2. Y-intercept: The y-intercept is given as [tex]\(5\)[/tex].
The gradient of a line can be found using the tangent of the angle of inclination:
[tex]\[ m = \tan(\theta) \][/tex]
where:
- [tex]\(\theta\)[/tex] is the angle of inclination.
For [tex]\(\theta = 135^\circ\)[/tex]:
[tex]\[ m = \tan(135^\circ) \][/tex]
The value of [tex]\(\tan(135^\circ)\)[/tex] is [tex]\(-1.0000000000000002\)[/tex] (which is approximately [tex]\(-1\)[/tex]).
The general form of the equation of a straight line is:
[tex]\[ y = mx + c \][/tex]
Plugging in the calculated gradient and the given y-intercept, we get:
[tex]\[ y = -1.0000000000000002x + 5 \][/tex]
So, the equation of the line for part (b) is:
[tex]\[ y = -1.0000000000000002x + 5 \][/tex]
To summarize:
- The equation of the line with a gradient of 3 and a y-intercept of -4 is:
[tex]\[ y = 3x - 4 \][/tex]
- The equation of the line with an angle of inclination of 135° and a y-intercept of 5 is:
[tex]\[ y = -1.0000000000000002x + 5 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.