Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the [tex]$x$[/tex]-intercepts of the quadratic function [tex]\( f(x) = (x+6)(x-3) \)[/tex], you need to find the values of [tex]\( x \)[/tex] where the function equals zero. This is achieved by setting [tex]\( f(x) = 0 \)[/tex] and solving for [tex]\( x \)[/tex].
1. Start with the given function:
[tex]\[ f(x) = (x+6)(x-3) \][/tex]
2. Set the function equal to zero to find the [tex]$x$[/tex]-intercepts:
[tex]\[ (x+6)(x-3) = 0 \][/tex]
3. Use the Zero Product Property, which states that if a product of factors is zero, at least one of the factors must be zero. Therefore, set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x + 6 = 0 \quad \text{or} \quad x - 3 = 0 \][/tex]
4. Solve each equation separately:
[tex]\[ x + 6 = 0 \quad \Rightarrow \quad x = -6 \][/tex]
[tex]\[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \][/tex]
So, the [tex]$x$[/tex]-intercepts of the function are:
[tex]\[ (-6, 0) \quad \text{and} \quad (3, 0) \][/tex]
Among the given choices, the point [tex]\((-6, 0)\)[/tex] is listed. Therefore, the [tex]$x$[/tex]-intercept of the quadratic function [tex]\( f(x) = (x+6)(x-3) \)[/tex] that matches one of the given options is:
[tex]\[ (-6, 0) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{(-6, 0)} \][/tex]
1. Start with the given function:
[tex]\[ f(x) = (x+6)(x-3) \][/tex]
2. Set the function equal to zero to find the [tex]$x$[/tex]-intercepts:
[tex]\[ (x+6)(x-3) = 0 \][/tex]
3. Use the Zero Product Property, which states that if a product of factors is zero, at least one of the factors must be zero. Therefore, set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ x + 6 = 0 \quad \text{or} \quad x - 3 = 0 \][/tex]
4. Solve each equation separately:
[tex]\[ x + 6 = 0 \quad \Rightarrow \quad x = -6 \][/tex]
[tex]\[ x - 3 = 0 \quad \Rightarrow \quad x = 3 \][/tex]
So, the [tex]$x$[/tex]-intercepts of the function are:
[tex]\[ (-6, 0) \quad \text{and} \quad (3, 0) \][/tex]
Among the given choices, the point [tex]\((-6, 0)\)[/tex] is listed. Therefore, the [tex]$x$[/tex]-intercept of the quadratic function [tex]\( f(x) = (x+6)(x-3) \)[/tex] that matches one of the given options is:
[tex]\[ (-6, 0) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{(-6, 0)} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.