Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's tackle the definite integrals one by one.
### (i) [tex]\(\int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx\)[/tex]
To evaluate this integral, we can use the substitution method. Observe that the integrand contains [tex]\(\tan^3(x)\)[/tex] and [tex]\(\sec^2(x)\)[/tex]. Knowing that the derivative of [tex]\(\tan(x)\)[/tex] is [tex]\(\sec^2(x)\)[/tex], we can use the substitution:
[tex]\[ u = \tan(x) \][/tex]
[tex]\[ \frac{du}{dx} = \sec^2(x) \][/tex]
Thus, [tex]\(du = \sec^2(x) \, dx\)[/tex].
Now, we rewrite the integral in terms of [tex]\(u\)[/tex]:
[tex]\[ \int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = \int_0^{\tan(\frac{\pi}{3})} u^3 \, du \][/tex]
Evaluating [tex]\(\tan(\frac{\pi}{3})\)[/tex] gives [tex]\( \sqrt{3} \)[/tex]. So, the integral becomes:
[tex]\[ \int_0^{\sqrt{3}} u^3 \, du \][/tex]
We now integrate [tex]\(u^3\)[/tex]:
[tex]\[ \int u^3 \, du = \frac{u^4}{4} \][/tex]
We then evaluate this at the bounds [tex]\(0\)[/tex] and [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \left[ \frac{u^4}{4} \right]_0^{\sqrt{3}} = \frac{(\sqrt{3})^4}{4} - \frac{0^4}{4} = \frac{9}{4} \][/tex]
Thus, the result of the first integral is:
[tex]\[ \int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = \frac{9}{4} = 2.25 \][/tex]
### (ii) [tex]\(\int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx\)[/tex]
For this integral, we can again use substitution. Let's set:
[tex]\[ u = \tan(x) \][/tex]
[tex]\[ \frac{du}{dx} = \sec^2(x) \][/tex]
Thus, [tex]\(du = \sec^2(x) \, dx\)[/tex].
Rewriting the integral in terms of [tex]\(u\)[/tex], we get:
[tex]\[ \int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \int_0^{\tan(\frac{\pi}{4})} \frac{du}{1 + u} \][/tex]
Evaluating [tex]\(\tan(\frac{\pi}{4})\)[/tex] gives [tex]\(1\)[/tex]. So, the integral becomes:
[tex]\[ \int_0^{1} \frac{du}{1 + u} \][/tex]
We now integrate [tex]\(\frac{1}{1 + u}\)[/tex]:
[tex]\[ \int \frac{1}{1 + u} \, du = \ln|1 + u| \][/tex]
We then evaluate this at the bounds [tex]\(0\)[/tex] and [tex]\(1\)[/tex]:
[tex]\[ \left[ \ln|1 + u| \right]_0^1 = \ln(1 + 1) - \ln(1 + 0) = \ln(2) - \ln(1) \][/tex]
Since [tex]\(\ln(1)\)[/tex] is 0, the result simplifies to:
[tex]\[ \ln(2) \][/tex]
Thus, the result of the second integral is:
[tex]\[ \int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \ln(2) \approx 0.6931471805599453 \][/tex]
### Summary
(i) [tex]\(\int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = 2.25\)[/tex]
(ii) [tex]\(\int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \ln(2) \approx 0.6931471805599453\)[/tex]
### (i) [tex]\(\int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx\)[/tex]
To evaluate this integral, we can use the substitution method. Observe that the integrand contains [tex]\(\tan^3(x)\)[/tex] and [tex]\(\sec^2(x)\)[/tex]. Knowing that the derivative of [tex]\(\tan(x)\)[/tex] is [tex]\(\sec^2(x)\)[/tex], we can use the substitution:
[tex]\[ u = \tan(x) \][/tex]
[tex]\[ \frac{du}{dx} = \sec^2(x) \][/tex]
Thus, [tex]\(du = \sec^2(x) \, dx\)[/tex].
Now, we rewrite the integral in terms of [tex]\(u\)[/tex]:
[tex]\[ \int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = \int_0^{\tan(\frac{\pi}{3})} u^3 \, du \][/tex]
Evaluating [tex]\(\tan(\frac{\pi}{3})\)[/tex] gives [tex]\( \sqrt{3} \)[/tex]. So, the integral becomes:
[tex]\[ \int_0^{\sqrt{3}} u^3 \, du \][/tex]
We now integrate [tex]\(u^3\)[/tex]:
[tex]\[ \int u^3 \, du = \frac{u^4}{4} \][/tex]
We then evaluate this at the bounds [tex]\(0\)[/tex] and [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \left[ \frac{u^4}{4} \right]_0^{\sqrt{3}} = \frac{(\sqrt{3})^4}{4} - \frac{0^4}{4} = \frac{9}{4} \][/tex]
Thus, the result of the first integral is:
[tex]\[ \int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = \frac{9}{4} = 2.25 \][/tex]
### (ii) [tex]\(\int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx\)[/tex]
For this integral, we can again use substitution. Let's set:
[tex]\[ u = \tan(x) \][/tex]
[tex]\[ \frac{du}{dx} = \sec^2(x) \][/tex]
Thus, [tex]\(du = \sec^2(x) \, dx\)[/tex].
Rewriting the integral in terms of [tex]\(u\)[/tex], we get:
[tex]\[ \int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \int_0^{\tan(\frac{\pi}{4})} \frac{du}{1 + u} \][/tex]
Evaluating [tex]\(\tan(\frac{\pi}{4})\)[/tex] gives [tex]\(1\)[/tex]. So, the integral becomes:
[tex]\[ \int_0^{1} \frac{du}{1 + u} \][/tex]
We now integrate [tex]\(\frac{1}{1 + u}\)[/tex]:
[tex]\[ \int \frac{1}{1 + u} \, du = \ln|1 + u| \][/tex]
We then evaluate this at the bounds [tex]\(0\)[/tex] and [tex]\(1\)[/tex]:
[tex]\[ \left[ \ln|1 + u| \right]_0^1 = \ln(1 + 1) - \ln(1 + 0) = \ln(2) - \ln(1) \][/tex]
Since [tex]\(\ln(1)\)[/tex] is 0, the result simplifies to:
[tex]\[ \ln(2) \][/tex]
Thus, the result of the second integral is:
[tex]\[ \int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \ln(2) \approx 0.6931471805599453 \][/tex]
### Summary
(i) [tex]\(\int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = 2.25\)[/tex]
(ii) [tex]\(\int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \ln(2) \approx 0.6931471805599453\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.