Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's tackle the definite integrals one by one.
### (i) [tex]\(\int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx\)[/tex]
To evaluate this integral, we can use the substitution method. Observe that the integrand contains [tex]\(\tan^3(x)\)[/tex] and [tex]\(\sec^2(x)\)[/tex]. Knowing that the derivative of [tex]\(\tan(x)\)[/tex] is [tex]\(\sec^2(x)\)[/tex], we can use the substitution:
[tex]\[ u = \tan(x) \][/tex]
[tex]\[ \frac{du}{dx} = \sec^2(x) \][/tex]
Thus, [tex]\(du = \sec^2(x) \, dx\)[/tex].
Now, we rewrite the integral in terms of [tex]\(u\)[/tex]:
[tex]\[ \int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = \int_0^{\tan(\frac{\pi}{3})} u^3 \, du \][/tex]
Evaluating [tex]\(\tan(\frac{\pi}{3})\)[/tex] gives [tex]\( \sqrt{3} \)[/tex]. So, the integral becomes:
[tex]\[ \int_0^{\sqrt{3}} u^3 \, du \][/tex]
We now integrate [tex]\(u^3\)[/tex]:
[tex]\[ \int u^3 \, du = \frac{u^4}{4} \][/tex]
We then evaluate this at the bounds [tex]\(0\)[/tex] and [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \left[ \frac{u^4}{4} \right]_0^{\sqrt{3}} = \frac{(\sqrt{3})^4}{4} - \frac{0^4}{4} = \frac{9}{4} \][/tex]
Thus, the result of the first integral is:
[tex]\[ \int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = \frac{9}{4} = 2.25 \][/tex]
### (ii) [tex]\(\int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx\)[/tex]
For this integral, we can again use substitution. Let's set:
[tex]\[ u = \tan(x) \][/tex]
[tex]\[ \frac{du}{dx} = \sec^2(x) \][/tex]
Thus, [tex]\(du = \sec^2(x) \, dx\)[/tex].
Rewriting the integral in terms of [tex]\(u\)[/tex], we get:
[tex]\[ \int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \int_0^{\tan(\frac{\pi}{4})} \frac{du}{1 + u} \][/tex]
Evaluating [tex]\(\tan(\frac{\pi}{4})\)[/tex] gives [tex]\(1\)[/tex]. So, the integral becomes:
[tex]\[ \int_0^{1} \frac{du}{1 + u} \][/tex]
We now integrate [tex]\(\frac{1}{1 + u}\)[/tex]:
[tex]\[ \int \frac{1}{1 + u} \, du = \ln|1 + u| \][/tex]
We then evaluate this at the bounds [tex]\(0\)[/tex] and [tex]\(1\)[/tex]:
[tex]\[ \left[ \ln|1 + u| \right]_0^1 = \ln(1 + 1) - \ln(1 + 0) = \ln(2) - \ln(1) \][/tex]
Since [tex]\(\ln(1)\)[/tex] is 0, the result simplifies to:
[tex]\[ \ln(2) \][/tex]
Thus, the result of the second integral is:
[tex]\[ \int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \ln(2) \approx 0.6931471805599453 \][/tex]
### Summary
(i) [tex]\(\int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = 2.25\)[/tex]
(ii) [tex]\(\int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \ln(2) \approx 0.6931471805599453\)[/tex]
### (i) [tex]\(\int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx\)[/tex]
To evaluate this integral, we can use the substitution method. Observe that the integrand contains [tex]\(\tan^3(x)\)[/tex] and [tex]\(\sec^2(x)\)[/tex]. Knowing that the derivative of [tex]\(\tan(x)\)[/tex] is [tex]\(\sec^2(x)\)[/tex], we can use the substitution:
[tex]\[ u = \tan(x) \][/tex]
[tex]\[ \frac{du}{dx} = \sec^2(x) \][/tex]
Thus, [tex]\(du = \sec^2(x) \, dx\)[/tex].
Now, we rewrite the integral in terms of [tex]\(u\)[/tex]:
[tex]\[ \int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = \int_0^{\tan(\frac{\pi}{3})} u^3 \, du \][/tex]
Evaluating [tex]\(\tan(\frac{\pi}{3})\)[/tex] gives [tex]\( \sqrt{3} \)[/tex]. So, the integral becomes:
[tex]\[ \int_0^{\sqrt{3}} u^3 \, du \][/tex]
We now integrate [tex]\(u^3\)[/tex]:
[tex]\[ \int u^3 \, du = \frac{u^4}{4} \][/tex]
We then evaluate this at the bounds [tex]\(0\)[/tex] and [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \left[ \frac{u^4}{4} \right]_0^{\sqrt{3}} = \frac{(\sqrt{3})^4}{4} - \frac{0^4}{4} = \frac{9}{4} \][/tex]
Thus, the result of the first integral is:
[tex]\[ \int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = \frac{9}{4} = 2.25 \][/tex]
### (ii) [tex]\(\int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx\)[/tex]
For this integral, we can again use substitution. Let's set:
[tex]\[ u = \tan(x) \][/tex]
[tex]\[ \frac{du}{dx} = \sec^2(x) \][/tex]
Thus, [tex]\(du = \sec^2(x) \, dx\)[/tex].
Rewriting the integral in terms of [tex]\(u\)[/tex], we get:
[tex]\[ \int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \int_0^{\tan(\frac{\pi}{4})} \frac{du}{1 + u} \][/tex]
Evaluating [tex]\(\tan(\frac{\pi}{4})\)[/tex] gives [tex]\(1\)[/tex]. So, the integral becomes:
[tex]\[ \int_0^{1} \frac{du}{1 + u} \][/tex]
We now integrate [tex]\(\frac{1}{1 + u}\)[/tex]:
[tex]\[ \int \frac{1}{1 + u} \, du = \ln|1 + u| \][/tex]
We then evaluate this at the bounds [tex]\(0\)[/tex] and [tex]\(1\)[/tex]:
[tex]\[ \left[ \ln|1 + u| \right]_0^1 = \ln(1 + 1) - \ln(1 + 0) = \ln(2) - \ln(1) \][/tex]
Since [tex]\(\ln(1)\)[/tex] is 0, the result simplifies to:
[tex]\[ \ln(2) \][/tex]
Thus, the result of the second integral is:
[tex]\[ \int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \ln(2) \approx 0.6931471805599453 \][/tex]
### Summary
(i) [tex]\(\int_0^{\frac{\pi}{3}} \tan^3(x) \sec^2(x) \, dx = 2.25\)[/tex]
(ii) [tex]\(\int_0^{\frac{\pi}{4}} \frac{\sec^2(x)}{1 + \tan(x)} \, dx = \ln(2) \approx 0.6931471805599453\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.