At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
First, let’s start by evaluating the given mathematical problem: [tex]\( y = \sqrt{\sin x - \cos x} \)[/tex] with [tex]\( x = 45^\circ \)[/tex].
Step 1: Convert the angle to radians.
Since trigonometric functions in mathematics often use radians, we'll convert [tex]\( 45^\circ \)[/tex] to radians. The conversion from degrees to radians is done using the formula:
[tex]\[ \theta_{radians} = \theta_{degrees} \times \frac{\pi}{180} \][/tex]
For [tex]\( x = 45^\circ \)[/tex]:
[tex]\[ x = 45^\circ \times \frac{\pi}{180} = \frac{\pi}{4} \][/tex]
Step 2: Calculate [tex]\(\sin x\)[/tex] and [tex]\(\cos x\)[/tex] for [tex]\( x = \frac{\pi}{4} \)[/tex].
We know that:
[tex]\[ \sin \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \][/tex]
[tex]\[ \cos \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \][/tex]
Step 3: Substitute [tex]\(\sin x\)[/tex] and [tex]\(\cos x\)[/tex] into the expression [tex]\(\sin x - \cos x\)[/tex].
[tex]\[ \sin \left( \frac{\pi}{4} \right) - \cos \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 0 \][/tex]
Step 4: Calculate the value of [tex]\( y \)[/tex].
[tex]\[ y = \sqrt{\sin x - \cos x} = \sqrt{0} = 0 \][/tex]
Conclusion:
For [tex]\( x = 45^\circ \)[/tex], the value of [tex]\( y \)[/tex] is [tex]\( y = 0 \)[/tex]. The provided angle [tex]\( y = 90^\circ \)[/tex] does not alter the evaluation of the expression since it's only involved in the problem statement to check the result of [tex]\( y = 0 \)[/tex]. Hence, the solution has been evaluated correctly without the angle [tex]\( y \)[/tex].
Thus, the final value is:
[tex]\[ y = 0 \][/tex]
Step 1: Convert the angle to radians.
Since trigonometric functions in mathematics often use radians, we'll convert [tex]\( 45^\circ \)[/tex] to radians. The conversion from degrees to radians is done using the formula:
[tex]\[ \theta_{radians} = \theta_{degrees} \times \frac{\pi}{180} \][/tex]
For [tex]\( x = 45^\circ \)[/tex]:
[tex]\[ x = 45^\circ \times \frac{\pi}{180} = \frac{\pi}{4} \][/tex]
Step 2: Calculate [tex]\(\sin x\)[/tex] and [tex]\(\cos x\)[/tex] for [tex]\( x = \frac{\pi}{4} \)[/tex].
We know that:
[tex]\[ \sin \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \][/tex]
[tex]\[ \cos \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \][/tex]
Step 3: Substitute [tex]\(\sin x\)[/tex] and [tex]\(\cos x\)[/tex] into the expression [tex]\(\sin x - \cos x\)[/tex].
[tex]\[ \sin \left( \frac{\pi}{4} \right) - \cos \left( \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 0 \][/tex]
Step 4: Calculate the value of [tex]\( y \)[/tex].
[tex]\[ y = \sqrt{\sin x - \cos x} = \sqrt{0} = 0 \][/tex]
Conclusion:
For [tex]\( x = 45^\circ \)[/tex], the value of [tex]\( y \)[/tex] is [tex]\( y = 0 \)[/tex]. The provided angle [tex]\( y = 90^\circ \)[/tex] does not alter the evaluation of the expression since it's only involved in the problem statement to check the result of [tex]\( y = 0 \)[/tex]. Hence, the solution has been evaluated correctly without the angle [tex]\( y \)[/tex].
Thus, the final value is:
[tex]\[ y = 0 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.