Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! To find the distance between the man's feet and the top of the lighthouse, we need to think of the problem in terms of right-angled triangles.
Here's the step-by-step solution:
1. Identify the right-angled triangle:
- The base of the triangle is the distance from the man to the base of the lighthouse, which is 8 meters.
- The height of the triangle is the height of the lighthouse, which is 15 meters.
- The hypotenuse of the triangle is the distance between the man's feet and the top of the lighthouse, which we need to find.
2. Apply the Pythagorean theorem:
- The Pythagorean theorem states that in a right-angled triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. It can be written as:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
- Here, [tex]\( a \)[/tex] is the height of the lighthouse, [tex]\( b \)[/tex] is the distance from the man to the base of the lighthouse, and [tex]\( c \)[/tex] is the hypotenuse.
3. Substitute the given values into the theorem:
- Let [tex]\( a = 15 \)[/tex] meters (height of the lighthouse).
- Let [tex]\( b = 8 \)[/tex] meters (distance from the man to the base of the lighthouse).
- We need to find [tex]\( c \)[/tex], the hypotenuse.
4. Calculate the hypotenuse:
- Substitute the values into the Pythagorean theorem:
[tex]\[ 15^2 + 8^2 = c^2 \][/tex]
- Calculate the squares of the known sides:
[tex]\[ 15^2 = 225 \][/tex]
[tex]\[ 8^2 = 64 \][/tex]
- Add these values:
[tex]\[ 225 + 64 = 289 \][/tex]
- Now solve for [tex]\( c \)[/tex]:
[tex]\[ c^2 = 289 \][/tex]
- Take the square root of both sides to find [tex]\( c \)[/tex]:
[tex]\[ c = \sqrt{289} = 17 \][/tex]
So, the distance between the man's feet and the top of the lighthouse is 17 meters.
Here's the step-by-step solution:
1. Identify the right-angled triangle:
- The base of the triangle is the distance from the man to the base of the lighthouse, which is 8 meters.
- The height of the triangle is the height of the lighthouse, which is 15 meters.
- The hypotenuse of the triangle is the distance between the man's feet and the top of the lighthouse, which we need to find.
2. Apply the Pythagorean theorem:
- The Pythagorean theorem states that in a right-angled triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. It can be written as:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
- Here, [tex]\( a \)[/tex] is the height of the lighthouse, [tex]\( b \)[/tex] is the distance from the man to the base of the lighthouse, and [tex]\( c \)[/tex] is the hypotenuse.
3. Substitute the given values into the theorem:
- Let [tex]\( a = 15 \)[/tex] meters (height of the lighthouse).
- Let [tex]\( b = 8 \)[/tex] meters (distance from the man to the base of the lighthouse).
- We need to find [tex]\( c \)[/tex], the hypotenuse.
4. Calculate the hypotenuse:
- Substitute the values into the Pythagorean theorem:
[tex]\[ 15^2 + 8^2 = c^2 \][/tex]
- Calculate the squares of the known sides:
[tex]\[ 15^2 = 225 \][/tex]
[tex]\[ 8^2 = 64 \][/tex]
- Add these values:
[tex]\[ 225 + 64 = 289 \][/tex]
- Now solve for [tex]\( c \)[/tex]:
[tex]\[ c^2 = 289 \][/tex]
- Take the square root of both sides to find [tex]\( c \)[/tex]:
[tex]\[ c = \sqrt{289} = 17 \][/tex]
So, the distance between the man's feet and the top of the lighthouse is 17 meters.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.