Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the solution set for the inequality [tex]\(4 \leq 3x - 2 < 13\)[/tex], follow these steps:
1. Break the compound inequality into two separate inequalities:
- [tex]\(4 \leq 3x - 2\)[/tex]
- [tex]\(3x - 2 < 13\)[/tex]
2. Solve each inequality separately:
First Inequality: [tex]\(4 \leq 3x - 2\)[/tex]
a. Add 2 to both sides of the inequality:
[tex]\[ 4 + 2 \leq 3x - 2 + 2 \][/tex]
This simplifies to:
[tex]\[ 6 \leq 3x \][/tex]
b. Divide both sides by 3:
[tex]\[ \frac{6}{3} \leq \frac{3x}{3} \][/tex]
This simplifies to:
[tex]\[ 2 \leq x \][/tex]
or equivalently:
[tex]\[ x \geq 2 \][/tex]
Second Inequality: [tex]\(3x - 2 < 13\)[/tex]
a. Add 2 to both sides of the inequality:
[tex]\[ 3x - 2 + 2 < 13 + 2 \][/tex]
This simplifies to:
[tex]\[ 3x < 15 \][/tex]
b. Divide both sides by 3:
[tex]\[ \frac{3x}{3} < \frac{15}{3} \][/tex]
This simplifies to:
[tex]\[ x < 5 \][/tex]
3. Combine the solutions:
- From the first inequality, we have [tex]\(x \geq 2\)[/tex].
- From the second inequality, we have [tex]\(x < 5\)[/tex].
Combining these two results, we get:
[tex]\[ 2 \leq x < 5 \][/tex]
4. Solution Set:
The solution set for the inequality [tex]\(4 \leq 3x - 2 < 13\)[/tex] is:
[tex]\[ [2, 5) \][/tex]
This means that [tex]\(x\)[/tex] can take any real value from 2 to just less than 5, inclusive of 2 but not including 5.
1. Break the compound inequality into two separate inequalities:
- [tex]\(4 \leq 3x - 2\)[/tex]
- [tex]\(3x - 2 < 13\)[/tex]
2. Solve each inequality separately:
First Inequality: [tex]\(4 \leq 3x - 2\)[/tex]
a. Add 2 to both sides of the inequality:
[tex]\[ 4 + 2 \leq 3x - 2 + 2 \][/tex]
This simplifies to:
[tex]\[ 6 \leq 3x \][/tex]
b. Divide both sides by 3:
[tex]\[ \frac{6}{3} \leq \frac{3x}{3} \][/tex]
This simplifies to:
[tex]\[ 2 \leq x \][/tex]
or equivalently:
[tex]\[ x \geq 2 \][/tex]
Second Inequality: [tex]\(3x - 2 < 13\)[/tex]
a. Add 2 to both sides of the inequality:
[tex]\[ 3x - 2 + 2 < 13 + 2 \][/tex]
This simplifies to:
[tex]\[ 3x < 15 \][/tex]
b. Divide both sides by 3:
[tex]\[ \frac{3x}{3} < \frac{15}{3} \][/tex]
This simplifies to:
[tex]\[ x < 5 \][/tex]
3. Combine the solutions:
- From the first inequality, we have [tex]\(x \geq 2\)[/tex].
- From the second inequality, we have [tex]\(x < 5\)[/tex].
Combining these two results, we get:
[tex]\[ 2 \leq x < 5 \][/tex]
4. Solution Set:
The solution set for the inequality [tex]\(4 \leq 3x - 2 < 13\)[/tex] is:
[tex]\[ [2, 5) \][/tex]
This means that [tex]\(x\)[/tex] can take any real value from 2 to just less than 5, inclusive of 2 but not including 5.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.