Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the town's total demand function, we'll need to combine the individual demand functions for the two groups: college students and other town residents.
First, let's define the inverse demand functions for each group:
- For college students: [tex]\( p = 120 - Q_1 \)[/tex]
- For other town residents: [tex]\( p = 120 - 2Q_2 \)[/tex]
Next, we need to express the quantity demanded ([tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]) in terms of the price ([tex]\(p\)[/tex]) for each group by solving these equations:
1. For college students:
[tex]\[ p = 120 - Q_1 \][/tex]
Rearrange to solve for [tex]\(Q_1\)[/tex]:
[tex]\[ Q_1 = 120 - p \][/tex]
2. For other town residents:
[tex]\[ p = 120 - 2Q_2 \][/tex]
Rearrange to solve for [tex]\(Q_2\)[/tex]:
[tex]\[ 2Q_2 = 120 - p \][/tex]
[tex]\[ Q_2 = \frac{120 - p}{2} \][/tex]
Now, the total demand [tex]\(Q_{total}\)[/tex] is the sum of [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = Q_1 + Q_2 \][/tex]
Substitute the expressions we found for [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = (120 - p) + \left( \frac{120 - p}{2} \right) \][/tex]
Combine the terms:
[tex]\[ Q_{total} = 120 - p + \frac{120 - p}{2} \][/tex]
[tex]\[ Q_{total} = 120 - p + 60 - \frac{p}{2} \][/tex]
Simplify the expression:
[tex]\[ Q_{total} = 180 - p - \frac{p}{2} \][/tex]
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
Therefore, the town's total demand function is:
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
First, let's define the inverse demand functions for each group:
- For college students: [tex]\( p = 120 - Q_1 \)[/tex]
- For other town residents: [tex]\( p = 120 - 2Q_2 \)[/tex]
Next, we need to express the quantity demanded ([tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]) in terms of the price ([tex]\(p\)[/tex]) for each group by solving these equations:
1. For college students:
[tex]\[ p = 120 - Q_1 \][/tex]
Rearrange to solve for [tex]\(Q_1\)[/tex]:
[tex]\[ Q_1 = 120 - p \][/tex]
2. For other town residents:
[tex]\[ p = 120 - 2Q_2 \][/tex]
Rearrange to solve for [tex]\(Q_2\)[/tex]:
[tex]\[ 2Q_2 = 120 - p \][/tex]
[tex]\[ Q_2 = \frac{120 - p}{2} \][/tex]
Now, the total demand [tex]\(Q_{total}\)[/tex] is the sum of [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = Q_1 + Q_2 \][/tex]
Substitute the expressions we found for [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = (120 - p) + \left( \frac{120 - p}{2} \right) \][/tex]
Combine the terms:
[tex]\[ Q_{total} = 120 - p + \frac{120 - p}{2} \][/tex]
[tex]\[ Q_{total} = 120 - p + 60 - \frac{p}{2} \][/tex]
Simplify the expression:
[tex]\[ Q_{total} = 180 - p - \frac{p}{2} \][/tex]
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
Therefore, the town's total demand function is:
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.