Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the town's total demand function, we'll need to combine the individual demand functions for the two groups: college students and other town residents.
First, let's define the inverse demand functions for each group:
- For college students: [tex]\( p = 120 - Q_1 \)[/tex]
- For other town residents: [tex]\( p = 120 - 2Q_2 \)[/tex]
Next, we need to express the quantity demanded ([tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]) in terms of the price ([tex]\(p\)[/tex]) for each group by solving these equations:
1. For college students:
[tex]\[ p = 120 - Q_1 \][/tex]
Rearrange to solve for [tex]\(Q_1\)[/tex]:
[tex]\[ Q_1 = 120 - p \][/tex]
2. For other town residents:
[tex]\[ p = 120 - 2Q_2 \][/tex]
Rearrange to solve for [tex]\(Q_2\)[/tex]:
[tex]\[ 2Q_2 = 120 - p \][/tex]
[tex]\[ Q_2 = \frac{120 - p}{2} \][/tex]
Now, the total demand [tex]\(Q_{total}\)[/tex] is the sum of [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = Q_1 + Q_2 \][/tex]
Substitute the expressions we found for [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = (120 - p) + \left( \frac{120 - p}{2} \right) \][/tex]
Combine the terms:
[tex]\[ Q_{total} = 120 - p + \frac{120 - p}{2} \][/tex]
[tex]\[ Q_{total} = 120 - p + 60 - \frac{p}{2} \][/tex]
Simplify the expression:
[tex]\[ Q_{total} = 180 - p - \frac{p}{2} \][/tex]
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
Therefore, the town's total demand function is:
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
First, let's define the inverse demand functions for each group:
- For college students: [tex]\( p = 120 - Q_1 \)[/tex]
- For other town residents: [tex]\( p = 120 - 2Q_2 \)[/tex]
Next, we need to express the quantity demanded ([tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]) in terms of the price ([tex]\(p\)[/tex]) for each group by solving these equations:
1. For college students:
[tex]\[ p = 120 - Q_1 \][/tex]
Rearrange to solve for [tex]\(Q_1\)[/tex]:
[tex]\[ Q_1 = 120 - p \][/tex]
2. For other town residents:
[tex]\[ p = 120 - 2Q_2 \][/tex]
Rearrange to solve for [tex]\(Q_2\)[/tex]:
[tex]\[ 2Q_2 = 120 - p \][/tex]
[tex]\[ Q_2 = \frac{120 - p}{2} \][/tex]
Now, the total demand [tex]\(Q_{total}\)[/tex] is the sum of [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = Q_1 + Q_2 \][/tex]
Substitute the expressions we found for [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = (120 - p) + \left( \frac{120 - p}{2} \right) \][/tex]
Combine the terms:
[tex]\[ Q_{total} = 120 - p + \frac{120 - p}{2} \][/tex]
[tex]\[ Q_{total} = 120 - p + 60 - \frac{p}{2} \][/tex]
Simplify the expression:
[tex]\[ Q_{total} = 180 - p - \frac{p}{2} \][/tex]
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
Therefore, the town's total demand function is:
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.