Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

c) Suppose that the inverse demand function for movies is [tex] p = 120 - Q_1 [/tex] for college students and [tex] p = 120 - 2Q_2 [/tex] for other town residents. What is the town's total demand function?

Sagot :

To find the town's total demand function, we'll need to combine the individual demand functions for the two groups: college students and other town residents.

First, let's define the inverse demand functions for each group:
- For college students: [tex]\( p = 120 - Q_1 \)[/tex]
- For other town residents: [tex]\( p = 120 - 2Q_2 \)[/tex]

Next, we need to express the quantity demanded ([tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]) in terms of the price ([tex]\(p\)[/tex]) for each group by solving these equations:

1. For college students:
[tex]\[ p = 120 - Q_1 \][/tex]
Rearrange to solve for [tex]\(Q_1\)[/tex]:
[tex]\[ Q_1 = 120 - p \][/tex]

2. For other town residents:
[tex]\[ p = 120 - 2Q_2 \][/tex]
Rearrange to solve for [tex]\(Q_2\)[/tex]:
[tex]\[ 2Q_2 = 120 - p \][/tex]
[tex]\[ Q_2 = \frac{120 - p}{2} \][/tex]

Now, the total demand [tex]\(Q_{total}\)[/tex] is the sum of [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = Q_1 + Q_2 \][/tex]
Substitute the expressions we found for [tex]\(Q_1\)[/tex] and [tex]\(Q_2\)[/tex]:
[tex]\[ Q_{total} = (120 - p) + \left( \frac{120 - p}{2} \right) \][/tex]

Combine the terms:
[tex]\[ Q_{total} = 120 - p + \frac{120 - p}{2} \][/tex]
[tex]\[ Q_{total} = 120 - p + 60 - \frac{p}{2} \][/tex]

Simplify the expression:
[tex]\[ Q_{total} = 180 - p - \frac{p}{2} \][/tex]
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]

Therefore, the town's total demand function is:
[tex]\[ Q_{total} = 180 - \frac{3p}{2} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.