Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Of course! Let's solve the equation [tex]\( 128 = 4^{2x} \times 2^x \)[/tex] step-by-step.
1. Rewrite the bases in terms of powers of 2:
- We know that [tex]\( 4 = 2^2 \)[/tex]. Therefore, [tex]\( 4^{2x} = (2^2)^{2x} = 2^{4x} \)[/tex].
- Thus, the equation becomes:
[tex]\[ 128 = 2^{4x} \times 2^x \][/tex]
2. Combine the exponents on the right-hand side:
- Using the property of exponents [tex]\( a^m \times a^n = a^{m+n} \)[/tex], we can combine the exponents:
[tex]\[ 128 = 2^{4x + x} = 2^{5x} \][/tex]
3. Express 128 as a power of 2:
- We know that [tex]\( 128 = 2^7 \)[/tex]. So, the equation becomes:
[tex]\[ 2^7 = 2^{5x} \][/tex]
4. Set the exponents equal to each other:
- Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ 7 = 5x \][/tex]
5. Solve for [tex]\( x \)[/tex]:
- Divide both sides of the equation by 5:
[tex]\[ x = \frac{7}{5} \][/tex]
So, one of the solutions for [tex]\( x \)[/tex] is [tex]\( x = \frac{7}{5} \)[/tex].
6. Consider the general solution for exponents involving complex numbers:
- To encompass all possible solutions, including complex numbers, we must remember that:
[tex]\[ 2^{5x} = 128 \][/tex]
- Taking the natural logarithm of both sides:
[tex]\[ \log(2^{5x}) = \log(128) \][/tex]
- Using the property of logarithms [tex]\( \log(a^b) = b\log(a) \)[/tex]:
[tex]\[ 5x \log(2) = \log(128) \][/tex]
- Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\log(128)}{5 \log(2)} \][/tex]
- However, for a complete solution, we consider the periodicity of the logarithm in the complex plane:
[tex]\[ x = \frac{\log(128) + 2k\pi i}{5 \log(2)} \][/tex]
- Simplifying the constant [tex]\(\log(128)\)[/tex]:
[tex]\[ \log(128) = 7 \log(2) \][/tex]
Thus, the general form is:
[tex]\[ x = \frac{7 \log(2) + 2k\pi i}{5\log(2)} = \frac{7}{5} + \frac{2k\pi i}{5\log(2)} \][/tex]
Summarizing the solutions:
- Real part: [tex]\( x = \frac{7}{5} \)[/tex]
- Complex parts: [tex]\( x = \frac{7}{5} + \frac{2k\pi i}{5\log(2)} \text{ for integer } k \)[/tex]
These represent all possible values of [tex]\( x \)[/tex] that satisfy the original equation. The exact solutions are:
[tex]\[ x = \frac{7}{5}, \quad x = \frac{\log(128) - 4i\pi}{5\log(2)}, \quad x = \frac{\log(128) - 2i\pi}{5\log(2)}, \quad x = \frac{\log(128) + 2i\pi}{5\log(2)}, \quad x = \frac{\log(128) + 4i\pi}{5\log(2)} \][/tex]
1. Rewrite the bases in terms of powers of 2:
- We know that [tex]\( 4 = 2^2 \)[/tex]. Therefore, [tex]\( 4^{2x} = (2^2)^{2x} = 2^{4x} \)[/tex].
- Thus, the equation becomes:
[tex]\[ 128 = 2^{4x} \times 2^x \][/tex]
2. Combine the exponents on the right-hand side:
- Using the property of exponents [tex]\( a^m \times a^n = a^{m+n} \)[/tex], we can combine the exponents:
[tex]\[ 128 = 2^{4x + x} = 2^{5x} \][/tex]
3. Express 128 as a power of 2:
- We know that [tex]\( 128 = 2^7 \)[/tex]. So, the equation becomes:
[tex]\[ 2^7 = 2^{5x} \][/tex]
4. Set the exponents equal to each other:
- Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ 7 = 5x \][/tex]
5. Solve for [tex]\( x \)[/tex]:
- Divide both sides of the equation by 5:
[tex]\[ x = \frac{7}{5} \][/tex]
So, one of the solutions for [tex]\( x \)[/tex] is [tex]\( x = \frac{7}{5} \)[/tex].
6. Consider the general solution for exponents involving complex numbers:
- To encompass all possible solutions, including complex numbers, we must remember that:
[tex]\[ 2^{5x} = 128 \][/tex]
- Taking the natural logarithm of both sides:
[tex]\[ \log(2^{5x}) = \log(128) \][/tex]
- Using the property of logarithms [tex]\( \log(a^b) = b\log(a) \)[/tex]:
[tex]\[ 5x \log(2) = \log(128) \][/tex]
- Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\log(128)}{5 \log(2)} \][/tex]
- However, for a complete solution, we consider the periodicity of the logarithm in the complex plane:
[tex]\[ x = \frac{\log(128) + 2k\pi i}{5 \log(2)} \][/tex]
- Simplifying the constant [tex]\(\log(128)\)[/tex]:
[tex]\[ \log(128) = 7 \log(2) \][/tex]
Thus, the general form is:
[tex]\[ x = \frac{7 \log(2) + 2k\pi i}{5\log(2)} = \frac{7}{5} + \frac{2k\pi i}{5\log(2)} \][/tex]
Summarizing the solutions:
- Real part: [tex]\( x = \frac{7}{5} \)[/tex]
- Complex parts: [tex]\( x = \frac{7}{5} + \frac{2k\pi i}{5\log(2)} \text{ for integer } k \)[/tex]
These represent all possible values of [tex]\( x \)[/tex] that satisfy the original equation. The exact solutions are:
[tex]\[ x = \frac{7}{5}, \quad x = \frac{\log(128) - 4i\pi}{5\log(2)}, \quad x = \frac{\log(128) - 2i\pi}{5\log(2)}, \quad x = \frac{\log(128) + 2i\pi}{5\log(2)}, \quad x = \frac{\log(128) + 4i\pi}{5\log(2)} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.