Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's go through each part of the question step by step.
### a) Joint probability mass function of X and Y
When you roll a pair of four-sided dice (one red and one black), each combination of outcomes (X, Y) is equally likely. Since each die has 4 faces, there are [tex]\(4 \times 4 = 16\)[/tex] possible outcomes.
The probability of any specific outcome such as (1, 1) or (3, 4) is given by:
[tex]\[ P(X = x, Y = y) = \frac{1}{16} \][/tex]
Thus, the joint probability mass function can be organized in a 4x4 matrix where each entry represents the probability of a particular pair (X, Y):
[tex]\[ P(X, Y) = \begin{array}{c|cccc} & Y=1 & Y=2 & Y=3 & Y=4 \\ \hline X=1 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=2 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=3 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=4 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ \end{array} \][/tex]
Or more concisely:
[tex]\[ \text{Joint PMF} = \begin{bmatrix} 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \end{bmatrix} \][/tex]
### b) Marginal probability mass function of X
The marginal PMF of X, [tex]\(P(X)\)[/tex], is found by summing the joint PMF over all possible values of Y.
For each value of X (1 through 4):
[tex]\[ P(X=x_i) = \sum_{j=1}^4 P(X=x_i, Y=y_j) = \sum_{j=1}^4 \frac{1}{16} = 4 \times \frac{1}{16} = \frac{4}{16} = \frac{1}{4} = 0.25 \][/tex]
So the marginal PMF of X is:
[tex]\[ P(X) = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} \][/tex]
### c) Marginal probability mass function of Y
Similarly, the marginal PMF of Y, [tex]\(P(Y)\)[/tex], is found by summing the joint PMF over all possible values of X.
For each value of Y (1 through 4):
[tex]\[ P(Y=y_j) = \sum_{i=1}^4 P(X=x_i, Y=y_j) = \sum_{i=1}^4 \frac{1}{16} = 4 \times \frac{1}{16} = \frac{4}{16} = \frac{1}{4} = 0.25 \][/tex]
So the marginal PMF of Y is:
[tex]\[ P(Y) = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} \][/tex]
### d) Are X and Y independent?
Two variables X and Y are considered independent if the joint probability [tex]\(P(X=x, Y=y)\)[/tex] is equal to the product of their marginal probabilities [tex]\(P(X=x) \cdot P(Y=y)\)[/tex] for all x and y.
Given the joint PMF:
[tex]\[ P(X=x, Y=y) = \frac{1}{16} \][/tex]
And the marginal PMFs:
[tex]\[ P(X=x) = 0.25 \quad \text{and} \quad P(Y=y) = 0.25 \][/tex]
We calculate the product:
[tex]\[ P(X=x) \cdot P(Y=y) = 0.25 \times 0.25 = 0.0625 \][/tex]
Since [tex]\(P(X=x, Y=y) = P(X=x) \cdot P(Y=y)\)[/tex] holds for all combinations of x and y, X and Y are independent.
### e) Calculate [tex]\(E(X)\)[/tex], [tex]\(E(Y)\)[/tex], [tex]\(\operatorname{Var}(X)\)[/tex], [tex]\(\operatorname{Var}(Y)\)[/tex]
#### Expected values:
The expected value [tex]\(E(X)\)[/tex] is calculated as:
[tex]\[ E(X) = \sum_{x=1}^{4} x \cdot P(X=x) = 1 \cdot 0.25 + 2 \cdot 0.25 + 3 \cdot 0.25 + 4 \cdot 0.25 = 0.25 \cdot (1+2+3+4) = 0.25 \cdot 10 = 2.5 \][/tex]
Similarly, the expected value [tex]\(E(Y)\)[/tex] is:
[tex]\[ E(Y) = \sum_{y=1}^{4} y \cdot P(Y=y) = 0.25 \cdot (1+2+3+4) = 2.5 \][/tex]
#### Variances:
The variance [tex]\(\operatorname{Var}(X)\)[/tex] is calculated as:
[tex]\[ \operatorname{Var}(X) = \sum_{x=1}^{4} (x - E(X))^2 \cdot P(X=x) = (1-2.5)^2 \cdot 0.25 + (2-2.5)^2 \cdot 0.25 + (3-2.5)^2 \cdot 0.25 + (4-2.5)^2 \cdot 0.25 \][/tex]
Breaking it down:
[tex]\[ \operatorname{Var}(X) = 0.25 \cdot [(1.5)^2 + (0.5)^2 + (0.5)^2 + (1.5)^2] = 0.25 \cdot [2.25 + 0.25 + 0.25 + 2.25] = 0.25 \cdot 5 = 1.25 \][/tex]
Similarly, the variance [tex]\(\operatorname{Var}(Y)\)[/tex] is:
[tex]\[ \operatorname{Var}(Y) = \sum_{y=1}^{4} (y - E(Y))^2 \cdot P(Y=y) = 1.25 \][/tex]
In summary:
[tex]\[ E(X) = E(Y) = 2.5 \][/tex]
[tex]\[ \operatorname{Var}(X) = \operatorname{Var}(Y) = 1.25 \][/tex]
### a) Joint probability mass function of X and Y
When you roll a pair of four-sided dice (one red and one black), each combination of outcomes (X, Y) is equally likely. Since each die has 4 faces, there are [tex]\(4 \times 4 = 16\)[/tex] possible outcomes.
The probability of any specific outcome such as (1, 1) or (3, 4) is given by:
[tex]\[ P(X = x, Y = y) = \frac{1}{16} \][/tex]
Thus, the joint probability mass function can be organized in a 4x4 matrix where each entry represents the probability of a particular pair (X, Y):
[tex]\[ P(X, Y) = \begin{array}{c|cccc} & Y=1 & Y=2 & Y=3 & Y=4 \\ \hline X=1 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=2 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=3 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=4 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ \end{array} \][/tex]
Or more concisely:
[tex]\[ \text{Joint PMF} = \begin{bmatrix} 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \end{bmatrix} \][/tex]
### b) Marginal probability mass function of X
The marginal PMF of X, [tex]\(P(X)\)[/tex], is found by summing the joint PMF over all possible values of Y.
For each value of X (1 through 4):
[tex]\[ P(X=x_i) = \sum_{j=1}^4 P(X=x_i, Y=y_j) = \sum_{j=1}^4 \frac{1}{16} = 4 \times \frac{1}{16} = \frac{4}{16} = \frac{1}{4} = 0.25 \][/tex]
So the marginal PMF of X is:
[tex]\[ P(X) = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} \][/tex]
### c) Marginal probability mass function of Y
Similarly, the marginal PMF of Y, [tex]\(P(Y)\)[/tex], is found by summing the joint PMF over all possible values of X.
For each value of Y (1 through 4):
[tex]\[ P(Y=y_j) = \sum_{i=1}^4 P(X=x_i, Y=y_j) = \sum_{i=1}^4 \frac{1}{16} = 4 \times \frac{1}{16} = \frac{4}{16} = \frac{1}{4} = 0.25 \][/tex]
So the marginal PMF of Y is:
[tex]\[ P(Y) = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} \][/tex]
### d) Are X and Y independent?
Two variables X and Y are considered independent if the joint probability [tex]\(P(X=x, Y=y)\)[/tex] is equal to the product of their marginal probabilities [tex]\(P(X=x) \cdot P(Y=y)\)[/tex] for all x and y.
Given the joint PMF:
[tex]\[ P(X=x, Y=y) = \frac{1}{16} \][/tex]
And the marginal PMFs:
[tex]\[ P(X=x) = 0.25 \quad \text{and} \quad P(Y=y) = 0.25 \][/tex]
We calculate the product:
[tex]\[ P(X=x) \cdot P(Y=y) = 0.25 \times 0.25 = 0.0625 \][/tex]
Since [tex]\(P(X=x, Y=y) = P(X=x) \cdot P(Y=y)\)[/tex] holds for all combinations of x and y, X and Y are independent.
### e) Calculate [tex]\(E(X)\)[/tex], [tex]\(E(Y)\)[/tex], [tex]\(\operatorname{Var}(X)\)[/tex], [tex]\(\operatorname{Var}(Y)\)[/tex]
#### Expected values:
The expected value [tex]\(E(X)\)[/tex] is calculated as:
[tex]\[ E(X) = \sum_{x=1}^{4} x \cdot P(X=x) = 1 \cdot 0.25 + 2 \cdot 0.25 + 3 \cdot 0.25 + 4 \cdot 0.25 = 0.25 \cdot (1+2+3+4) = 0.25 \cdot 10 = 2.5 \][/tex]
Similarly, the expected value [tex]\(E(Y)\)[/tex] is:
[tex]\[ E(Y) = \sum_{y=1}^{4} y \cdot P(Y=y) = 0.25 \cdot (1+2+3+4) = 2.5 \][/tex]
#### Variances:
The variance [tex]\(\operatorname{Var}(X)\)[/tex] is calculated as:
[tex]\[ \operatorname{Var}(X) = \sum_{x=1}^{4} (x - E(X))^2 \cdot P(X=x) = (1-2.5)^2 \cdot 0.25 + (2-2.5)^2 \cdot 0.25 + (3-2.5)^2 \cdot 0.25 + (4-2.5)^2 \cdot 0.25 \][/tex]
Breaking it down:
[tex]\[ \operatorname{Var}(X) = 0.25 \cdot [(1.5)^2 + (0.5)^2 + (0.5)^2 + (1.5)^2] = 0.25 \cdot [2.25 + 0.25 + 0.25 + 2.25] = 0.25 \cdot 5 = 1.25 \][/tex]
Similarly, the variance [tex]\(\operatorname{Var}(Y)\)[/tex] is:
[tex]\[ \operatorname{Var}(Y) = \sum_{y=1}^{4} (y - E(Y))^2 \cdot P(Y=y) = 1.25 \][/tex]
In summary:
[tex]\[ E(X) = E(Y) = 2.5 \][/tex]
[tex]\[ \operatorname{Var}(X) = \operatorname{Var}(Y) = 1.25 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.