Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's go through each part of the question step by step.
### a) Joint probability mass function of X and Y
When you roll a pair of four-sided dice (one red and one black), each combination of outcomes (X, Y) is equally likely. Since each die has 4 faces, there are [tex]\(4 \times 4 = 16\)[/tex] possible outcomes.
The probability of any specific outcome such as (1, 1) or (3, 4) is given by:
[tex]\[ P(X = x, Y = y) = \frac{1}{16} \][/tex]
Thus, the joint probability mass function can be organized in a 4x4 matrix where each entry represents the probability of a particular pair (X, Y):
[tex]\[ P(X, Y) = \begin{array}{c|cccc} & Y=1 & Y=2 & Y=3 & Y=4 \\ \hline X=1 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=2 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=3 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=4 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ \end{array} \][/tex]
Or more concisely:
[tex]\[ \text{Joint PMF} = \begin{bmatrix} 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \end{bmatrix} \][/tex]
### b) Marginal probability mass function of X
The marginal PMF of X, [tex]\(P(X)\)[/tex], is found by summing the joint PMF over all possible values of Y.
For each value of X (1 through 4):
[tex]\[ P(X=x_i) = \sum_{j=1}^4 P(X=x_i, Y=y_j) = \sum_{j=1}^4 \frac{1}{16} = 4 \times \frac{1}{16} = \frac{4}{16} = \frac{1}{4} = 0.25 \][/tex]
So the marginal PMF of X is:
[tex]\[ P(X) = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} \][/tex]
### c) Marginal probability mass function of Y
Similarly, the marginal PMF of Y, [tex]\(P(Y)\)[/tex], is found by summing the joint PMF over all possible values of X.
For each value of Y (1 through 4):
[tex]\[ P(Y=y_j) = \sum_{i=1}^4 P(X=x_i, Y=y_j) = \sum_{i=1}^4 \frac{1}{16} = 4 \times \frac{1}{16} = \frac{4}{16} = \frac{1}{4} = 0.25 \][/tex]
So the marginal PMF of Y is:
[tex]\[ P(Y) = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} \][/tex]
### d) Are X and Y independent?
Two variables X and Y are considered independent if the joint probability [tex]\(P(X=x, Y=y)\)[/tex] is equal to the product of their marginal probabilities [tex]\(P(X=x) \cdot P(Y=y)\)[/tex] for all x and y.
Given the joint PMF:
[tex]\[ P(X=x, Y=y) = \frac{1}{16} \][/tex]
And the marginal PMFs:
[tex]\[ P(X=x) = 0.25 \quad \text{and} \quad P(Y=y) = 0.25 \][/tex]
We calculate the product:
[tex]\[ P(X=x) \cdot P(Y=y) = 0.25 \times 0.25 = 0.0625 \][/tex]
Since [tex]\(P(X=x, Y=y) = P(X=x) \cdot P(Y=y)\)[/tex] holds for all combinations of x and y, X and Y are independent.
### e) Calculate [tex]\(E(X)\)[/tex], [tex]\(E(Y)\)[/tex], [tex]\(\operatorname{Var}(X)\)[/tex], [tex]\(\operatorname{Var}(Y)\)[/tex]
#### Expected values:
The expected value [tex]\(E(X)\)[/tex] is calculated as:
[tex]\[ E(X) = \sum_{x=1}^{4} x \cdot P(X=x) = 1 \cdot 0.25 + 2 \cdot 0.25 + 3 \cdot 0.25 + 4 \cdot 0.25 = 0.25 \cdot (1+2+3+4) = 0.25 \cdot 10 = 2.5 \][/tex]
Similarly, the expected value [tex]\(E(Y)\)[/tex] is:
[tex]\[ E(Y) = \sum_{y=1}^{4} y \cdot P(Y=y) = 0.25 \cdot (1+2+3+4) = 2.5 \][/tex]
#### Variances:
The variance [tex]\(\operatorname{Var}(X)\)[/tex] is calculated as:
[tex]\[ \operatorname{Var}(X) = \sum_{x=1}^{4} (x - E(X))^2 \cdot P(X=x) = (1-2.5)^2 \cdot 0.25 + (2-2.5)^2 \cdot 0.25 + (3-2.5)^2 \cdot 0.25 + (4-2.5)^2 \cdot 0.25 \][/tex]
Breaking it down:
[tex]\[ \operatorname{Var}(X) = 0.25 \cdot [(1.5)^2 + (0.5)^2 + (0.5)^2 + (1.5)^2] = 0.25 \cdot [2.25 + 0.25 + 0.25 + 2.25] = 0.25 \cdot 5 = 1.25 \][/tex]
Similarly, the variance [tex]\(\operatorname{Var}(Y)\)[/tex] is:
[tex]\[ \operatorname{Var}(Y) = \sum_{y=1}^{4} (y - E(Y))^2 \cdot P(Y=y) = 1.25 \][/tex]
In summary:
[tex]\[ E(X) = E(Y) = 2.5 \][/tex]
[tex]\[ \operatorname{Var}(X) = \operatorname{Var}(Y) = 1.25 \][/tex]
### a) Joint probability mass function of X and Y
When you roll a pair of four-sided dice (one red and one black), each combination of outcomes (X, Y) is equally likely. Since each die has 4 faces, there are [tex]\(4 \times 4 = 16\)[/tex] possible outcomes.
The probability of any specific outcome such as (1, 1) or (3, 4) is given by:
[tex]\[ P(X = x, Y = y) = \frac{1}{16} \][/tex]
Thus, the joint probability mass function can be organized in a 4x4 matrix where each entry represents the probability of a particular pair (X, Y):
[tex]\[ P(X, Y) = \begin{array}{c|cccc} & Y=1 & Y=2 & Y=3 & Y=4 \\ \hline X=1 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=2 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=3 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ X=4 & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} \\ \end{array} \][/tex]
Or more concisely:
[tex]\[ \text{Joint PMF} = \begin{bmatrix} 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \\ 0.0625 & 0.0625 & 0.0625 & 0.0625 \end{bmatrix} \][/tex]
### b) Marginal probability mass function of X
The marginal PMF of X, [tex]\(P(X)\)[/tex], is found by summing the joint PMF over all possible values of Y.
For each value of X (1 through 4):
[tex]\[ P(X=x_i) = \sum_{j=1}^4 P(X=x_i, Y=y_j) = \sum_{j=1}^4 \frac{1}{16} = 4 \times \frac{1}{16} = \frac{4}{16} = \frac{1}{4} = 0.25 \][/tex]
So the marginal PMF of X is:
[tex]\[ P(X) = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} \][/tex]
### c) Marginal probability mass function of Y
Similarly, the marginal PMF of Y, [tex]\(P(Y)\)[/tex], is found by summing the joint PMF over all possible values of X.
For each value of Y (1 through 4):
[tex]\[ P(Y=y_j) = \sum_{i=1}^4 P(X=x_i, Y=y_j) = \sum_{i=1}^4 \frac{1}{16} = 4 \times \frac{1}{16} = \frac{4}{16} = \frac{1}{4} = 0.25 \][/tex]
So the marginal PMF of Y is:
[tex]\[ P(Y) = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} \][/tex]
### d) Are X and Y independent?
Two variables X and Y are considered independent if the joint probability [tex]\(P(X=x, Y=y)\)[/tex] is equal to the product of their marginal probabilities [tex]\(P(X=x) \cdot P(Y=y)\)[/tex] for all x and y.
Given the joint PMF:
[tex]\[ P(X=x, Y=y) = \frac{1}{16} \][/tex]
And the marginal PMFs:
[tex]\[ P(X=x) = 0.25 \quad \text{and} \quad P(Y=y) = 0.25 \][/tex]
We calculate the product:
[tex]\[ P(X=x) \cdot P(Y=y) = 0.25 \times 0.25 = 0.0625 \][/tex]
Since [tex]\(P(X=x, Y=y) = P(X=x) \cdot P(Y=y)\)[/tex] holds for all combinations of x and y, X and Y are independent.
### e) Calculate [tex]\(E(X)\)[/tex], [tex]\(E(Y)\)[/tex], [tex]\(\operatorname{Var}(X)\)[/tex], [tex]\(\operatorname{Var}(Y)\)[/tex]
#### Expected values:
The expected value [tex]\(E(X)\)[/tex] is calculated as:
[tex]\[ E(X) = \sum_{x=1}^{4} x \cdot P(X=x) = 1 \cdot 0.25 + 2 \cdot 0.25 + 3 \cdot 0.25 + 4 \cdot 0.25 = 0.25 \cdot (1+2+3+4) = 0.25 \cdot 10 = 2.5 \][/tex]
Similarly, the expected value [tex]\(E(Y)\)[/tex] is:
[tex]\[ E(Y) = \sum_{y=1}^{4} y \cdot P(Y=y) = 0.25 \cdot (1+2+3+4) = 2.5 \][/tex]
#### Variances:
The variance [tex]\(\operatorname{Var}(X)\)[/tex] is calculated as:
[tex]\[ \operatorname{Var}(X) = \sum_{x=1}^{4} (x - E(X))^2 \cdot P(X=x) = (1-2.5)^2 \cdot 0.25 + (2-2.5)^2 \cdot 0.25 + (3-2.5)^2 \cdot 0.25 + (4-2.5)^2 \cdot 0.25 \][/tex]
Breaking it down:
[tex]\[ \operatorname{Var}(X) = 0.25 \cdot [(1.5)^2 + (0.5)^2 + (0.5)^2 + (1.5)^2] = 0.25 \cdot [2.25 + 0.25 + 0.25 + 2.25] = 0.25 \cdot 5 = 1.25 \][/tex]
Similarly, the variance [tex]\(\operatorname{Var}(Y)\)[/tex] is:
[tex]\[ \operatorname{Var}(Y) = \sum_{y=1}^{4} (y - E(Y))^2 \cdot P(Y=y) = 1.25 \][/tex]
In summary:
[tex]\[ E(X) = E(Y) = 2.5 \][/tex]
[tex]\[ \operatorname{Var}(X) = \operatorname{Var}(Y) = 1.25 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.