Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the equation of the line that is perpendicular to [tex]\( y = 5x + 4 \)[/tex] and passes through the point [tex]\( (15, -2) \)[/tex], we need to follow these steps:
1. Determine the slope of the original line:
The original line is given by [tex]\( y = 5x + 4 \)[/tex]. The slope [tex]\( m \)[/tex] of this line is 5.
2. Find the slope of the perpendicular line:
The slopes of perpendicular lines are negative reciprocals of each other. Therefore, the slope of the line perpendicular to [tex]\( y = 5x + 4 \)[/tex] is:
[tex]\[ -\frac{1}{5} \][/tex]
3. Form the equation of the new line:
We now use the point-slope form of a linear equation, which is:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Here, [tex]\( (x_1, y_1) = (15, -2) \)[/tex] and [tex]\( m = -\frac{1}{5} \)[/tex]. Plugging these values into the equation, we get:
[tex]\[ y - (-2) = -\frac{1}{5} (x - 15) \][/tex]
Simplifying this, we have:
[tex]\[ y + 2 = -\frac{1}{5}x + \frac{15}{5} \][/tex]
[tex]\[ y + 2 = -\frac{1}{5}x + 3 \][/tex]
4. Solve for [tex]\( b \)[/tex] in the new equation [tex]\( y = -\frac{1}{5}x + b \)[/tex]:
To get the equation in the form [tex]\( y = -\frac{1}{5}x + b \)[/tex], we isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{5}x + 3 - 2 \][/tex]
Simplifying this, we get:
[tex]\[ y = -\frac{1}{5}x + 1 \][/tex]
5. Identify the value of [tex]\( b \)[/tex]:
Comparing this with the form [tex]\( y = -\frac{1}{5}x + b \)[/tex], it is clear that:
[tex]\[ b = 1 \][/tex]
Thus, the value of [tex]\( b \)[/tex] is [tex]\( \boxed{1} \)[/tex].
1. Determine the slope of the original line:
The original line is given by [tex]\( y = 5x + 4 \)[/tex]. The slope [tex]\( m \)[/tex] of this line is 5.
2. Find the slope of the perpendicular line:
The slopes of perpendicular lines are negative reciprocals of each other. Therefore, the slope of the line perpendicular to [tex]\( y = 5x + 4 \)[/tex] is:
[tex]\[ -\frac{1}{5} \][/tex]
3. Form the equation of the new line:
We now use the point-slope form of a linear equation, which is:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Here, [tex]\( (x_1, y_1) = (15, -2) \)[/tex] and [tex]\( m = -\frac{1}{5} \)[/tex]. Plugging these values into the equation, we get:
[tex]\[ y - (-2) = -\frac{1}{5} (x - 15) \][/tex]
Simplifying this, we have:
[tex]\[ y + 2 = -\frac{1}{5}x + \frac{15}{5} \][/tex]
[tex]\[ y + 2 = -\frac{1}{5}x + 3 \][/tex]
4. Solve for [tex]\( b \)[/tex] in the new equation [tex]\( y = -\frac{1}{5}x + b \)[/tex]:
To get the equation in the form [tex]\( y = -\frac{1}{5}x + b \)[/tex], we isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{1}{5}x + 3 - 2 \][/tex]
Simplifying this, we get:
[tex]\[ y = -\frac{1}{5}x + 1 \][/tex]
5. Identify the value of [tex]\( b \)[/tex]:
Comparing this with the form [tex]\( y = -\frac{1}{5}x + b \)[/tex], it is clear that:
[tex]\[ b = 1 \][/tex]
Thus, the value of [tex]\( b \)[/tex] is [tex]\( \boxed{1} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.