At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's go through this step-by-step.
1. Understanding the Problem:
- Original mass of the planet is [tex]\( M \)[/tex].
- The mass of the planet is reduced to [tex]\(\frac{1}{8}\)[/tex] of the original mass.
- Density of the planet remains constant.
- We need to determine the new acceleration due to gravity ([tex]\(g'\)[/tex]) of the planet.
2. Key Formulas:
- Acceleration due to gravity [tex]\( g \)[/tex] on a planet is given by:
[tex]\[ g = \frac{GM}{R^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( M \)[/tex] is the mass of the planet, and [tex]\( R \)[/tex] is the radius of the planet.
- Since density ([tex]\( \rho \)[/tex]) remains constant:
[tex]\[ \rho = \frac{M}{V} \quad \text{and} \quad V = \frac{4}{3} \pi R^3 \][/tex]
3. Mass Reduction and Density Constant:
- New mass, [tex]\( M' = \frac{M}{8} \)[/tex].
- Density remains constant, hence:
[tex]\[ \rho = \frac{M}{\frac{4}{3} \pi R^3} = \frac{M'}{\frac{4}{3} \pi {R'}^3} \][/tex]
Since [tex]\(\rho\)[/tex] doesn't change:
[tex]\[ \frac{M}{R^3} = \frac{M'}{{R'}^3} \][/tex]
4. Relating Volumes and Radii:
- Using [tex]\( M' = \frac{M}{8} \)[/tex]:
[tex]\[ \frac{M}{{R}^3} = \frac{\frac{M}{8}}{R'^3} \][/tex]
[tex]\[ \frac{M}{{R}^3} = \frac{M}{8R'^3} \][/tex]
[tex]\[ {R'^3} = \frac{R^3}{8} \][/tex]
[tex]\[ R' = \left(\frac{R^3}{8}\right)^{\frac{1}{3}} = \frac{R}{2} \][/tex]
5. Calculating the New Gravity ([tex]\( g' \)[/tex]):
- Using the formula for gravity:
[tex]\[ g' = \frac{G M'}{R'^2} \][/tex]
- Substitute [tex]\( M' = \frac{M}{8} \)[/tex] and [tex]\( R' = \frac{R}{2} \)[/tex] into the gravity formula:
[tex]\[ g' = \frac{G \left(\frac{M}{8}\right)}{\left(\frac{R}{2}\right)^2} \][/tex]
[tex]\[ g' = \frac{\frac{G M}{8}}{\frac{R^2}{4}} \][/tex]
[tex]\[ g' = \frac{GM}{8} \cdot \frac{4}{R^2} \][/tex]
[tex]\[ g' = \frac{GM}{R^2} \cdot \frac{4}{8} \][/tex]
[tex]\[ g' = \frac{GM}{R^2} \cdot \frac{1}{2} \][/tex]
[tex]\[ g' = \frac{g}{2} \][/tex]
So, the new value of acceleration due to gravity of the planet when its mass is reduced to [tex]\(\frac{1}{8}\)[/tex] without change in density is:
[tex]\[ g' = \frac{g}{2} \][/tex]
Thus, the correct answer is:
b) [tex]\(\frac{g}{2}\)[/tex]
1. Understanding the Problem:
- Original mass of the planet is [tex]\( M \)[/tex].
- The mass of the planet is reduced to [tex]\(\frac{1}{8}\)[/tex] of the original mass.
- Density of the planet remains constant.
- We need to determine the new acceleration due to gravity ([tex]\(g'\)[/tex]) of the planet.
2. Key Formulas:
- Acceleration due to gravity [tex]\( g \)[/tex] on a planet is given by:
[tex]\[ g = \frac{GM}{R^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( M \)[/tex] is the mass of the planet, and [tex]\( R \)[/tex] is the radius of the planet.
- Since density ([tex]\( \rho \)[/tex]) remains constant:
[tex]\[ \rho = \frac{M}{V} \quad \text{and} \quad V = \frac{4}{3} \pi R^3 \][/tex]
3. Mass Reduction and Density Constant:
- New mass, [tex]\( M' = \frac{M}{8} \)[/tex].
- Density remains constant, hence:
[tex]\[ \rho = \frac{M}{\frac{4}{3} \pi R^3} = \frac{M'}{\frac{4}{3} \pi {R'}^3} \][/tex]
Since [tex]\(\rho\)[/tex] doesn't change:
[tex]\[ \frac{M}{R^3} = \frac{M'}{{R'}^3} \][/tex]
4. Relating Volumes and Radii:
- Using [tex]\( M' = \frac{M}{8} \)[/tex]:
[tex]\[ \frac{M}{{R}^3} = \frac{\frac{M}{8}}{R'^3} \][/tex]
[tex]\[ \frac{M}{{R}^3} = \frac{M}{8R'^3} \][/tex]
[tex]\[ {R'^3} = \frac{R^3}{8} \][/tex]
[tex]\[ R' = \left(\frac{R^3}{8}\right)^{\frac{1}{3}} = \frac{R}{2} \][/tex]
5. Calculating the New Gravity ([tex]\( g' \)[/tex]):
- Using the formula for gravity:
[tex]\[ g' = \frac{G M'}{R'^2} \][/tex]
- Substitute [tex]\( M' = \frac{M}{8} \)[/tex] and [tex]\( R' = \frac{R}{2} \)[/tex] into the gravity formula:
[tex]\[ g' = \frac{G \left(\frac{M}{8}\right)}{\left(\frac{R}{2}\right)^2} \][/tex]
[tex]\[ g' = \frac{\frac{G M}{8}}{\frac{R^2}{4}} \][/tex]
[tex]\[ g' = \frac{GM}{8} \cdot \frac{4}{R^2} \][/tex]
[tex]\[ g' = \frac{GM}{R^2} \cdot \frac{4}{8} \][/tex]
[tex]\[ g' = \frac{GM}{R^2} \cdot \frac{1}{2} \][/tex]
[tex]\[ g' = \frac{g}{2} \][/tex]
So, the new value of acceleration due to gravity of the planet when its mass is reduced to [tex]\(\frac{1}{8}\)[/tex] without change in density is:
[tex]\[ g' = \frac{g}{2} \][/tex]
Thus, the correct answer is:
b) [tex]\(\frac{g}{2}\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.