Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Question 1 of 10:

What is the solution to the division problem below? (You can use long division or synthetic division.)

[tex]\[
\frac{2x^3 - 4x^2 - 3x - 9}{x - 3}
\][/tex]

Sagot :

To solve the division problem [tex]\(\frac{2x^3 - 4x^2 - 3x - 9}{x - 3}\)[/tex], let's use synthetic division. Here is a detailed, step-by-step solution:

1. Identify the coefficients of the polynomial and the root of the divisor:
- The coefficients of the polynomial [tex]\(2x^3 - 4x^2 - 3x - 9\)[/tex] are [tex]\([2, -4, -3, -9]\)[/tex].
- The divisor is [tex]\(x - 3\)[/tex], giving us the root [tex]\(3\)[/tex].

2. Setup for synthetic division:
- We use the root [tex]\(3\)[/tex] and the coefficients [tex]\([2, -4, -3, -9]\)[/tex].

3. Perform the synthetic division:
- Start with the leading coefficient [tex]\(2\)[/tex].
- Multiply the current value by the root and add to the next coefficient.
- Repeat this process until all coefficients have been used.

Let's do this step by step:

- Bring down the leading coefficient:
[tex]\[ 2 \][/tex]
- Multiply [tex]\(2\)[/tex] by the root [tex]\(3\)[/tex] and add it to the next coefficient [tex]\(-4\)[/tex]:
[tex]\[ 2 \times 3 = 6 \][/tex]
[tex]\[ -4 + 6 = 2 \][/tex]
- Multiply the result [tex]\(2\)[/tex] by the root [tex]\(3\)[/tex] and add it to the next coefficient [tex]\(-3\)[/tex]:
[tex]\[ 2 \times 3 = 6 \][/tex]
[tex]\[ -3 + 6 = 3 \][/tex]
- Multiply the result [tex]\(3\)[/tex] by the root [tex]\(3\)[/tex] and add it to the next coefficient [tex]\(-9\)[/tex]:
[tex]\[ 3 \times 3 = 9 \][/tex]
[tex]\[ -9 + 9 = 0 \][/tex]

4. Collect the results:
- The synthetic division steps yield:
[tex]\[ [2, 2, 3, 0] \][/tex]
- The coefficients of the quotient are the first three values (all but the last one):
[tex]\[ [2, 2, 3] \][/tex]
- The remainder is the last value:
[tex]\[ 0 \][/tex]

5. Form the quotient polynomial:
- The quotient polynomial, based on the quotient coefficients [tex]\([2, 2, 3]\)[/tex], is:
[tex]\[ 2x^2 + 2x + 3 \][/tex]
- The remainder is [tex]\(0\)[/tex], indicating the division is exact.

6. Conclusion:
- The result of the division is:
[tex]\(\frac{2x^3 - 4x^2 - 3x - 9}{x - 3} = 2x^2 + 2x + 3\)[/tex]

So, the solution to the division problem [tex]\(\frac{2x^3 - 4x^2 - 3x - 9}{x - 3}\)[/tex] is [tex]\(2x^2 + 2x + 3\)[/tex].