Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the local minimum of the given function [tex]\(\pi(x)\)[/tex] from the table of values, we need to identify the point where the function attains the lowest value.
Here's the table again for reference:
[tex]\[ \begin{array}{|c|c|} \hline x & \pi(x) \\ \hline -4 & 105 \\ \hline -3 & 0 \\ \hline -2 & -15 \\ \hline -1 & 0 \\ \hline 0 & 9 \\ \hline 1 & 0 \\ \hline 2 & -15 \\ \hline 3 & 0 \\ \hline 4 & 105 \\ \hline 5 & 384 \\ \hline \end{array} \][/tex]
We need to:
1. Look for all the values of [tex]\(\pi(x)\)[/tex] and identify the smallest value.
2. Check that the corresponding [tex]\(x\)[/tex] value produces the global minimum or local minimum by considering neighboring values.
From the table, we observe the following values:
- [tex]\(\pi(-4) = 105\)[/tex]
- [tex]\(\pi(-3) = 0\)[/tex]
- [tex]\(\pi(-2) = -15\)[/tex]
- [tex]\(\pi(-1) = 0\)[/tex]
- [tex]\(\pi(0) = 9\)[/tex]
- [tex]\(\pi(1) = 0\)[/tex]
- [tex]\(\pi(2) = -15\)[/tex]
- [tex]\(\pi(3) = 0\)[/tex]
- [tex]\(\pi(4) = 105\)[/tex]
- [tex]\(\pi(5) = 384\)[/tex]
The smallest value in the table is [tex]\(-15\)[/tex].
We see two points where [tex]\(\pi(x) = -15\)[/tex]:
- [tex]\(\pi(-2) = -15\)[/tex]
- [tex]\(\pi(2) = -15\)[/tex]
Although both points [tex]\((-2, -15)\)[/tex] and [tex]\((2, -15)\)[/tex] share the same function value, we need to determine which one is a local minimum. In this context, we validate this by verifying adjacent values to ensure that they are higher than the minimum.
Here's the validation:
- For [tex]\(x = -2\)[/tex], the adjacent values are [tex]\(\pi(-3) = 0\)[/tex] and [tex]\(\pi(-1) = 0\)[/tex], which are both higher than [tex]\(-15\)[/tex].
- For [tex]\(x = 2\)[/tex], the adjacent values are [tex]\(\pi(1) = 0\)[/tex] and [tex]\(\pi(3) = 0\)[/tex], which are both higher than [tex]\(-15\)[/tex].
Thus, both [tex]\((-2, -15)\)[/tex] and [tex]\((2, -15)\)[/tex] can be considered local minima, but typically we report the first occurrence or the one explicitly asked for.
Therefore, the ordered pair that represents a local minimum of the function [tex]\(\pi(x)\)[/tex], according to the table, is:
[tex]\(\boxed{(-2, -15)}\)[/tex]
Here's the table again for reference:
[tex]\[ \begin{array}{|c|c|} \hline x & \pi(x) \\ \hline -4 & 105 \\ \hline -3 & 0 \\ \hline -2 & -15 \\ \hline -1 & 0 \\ \hline 0 & 9 \\ \hline 1 & 0 \\ \hline 2 & -15 \\ \hline 3 & 0 \\ \hline 4 & 105 \\ \hline 5 & 384 \\ \hline \end{array} \][/tex]
We need to:
1. Look for all the values of [tex]\(\pi(x)\)[/tex] and identify the smallest value.
2. Check that the corresponding [tex]\(x\)[/tex] value produces the global minimum or local minimum by considering neighboring values.
From the table, we observe the following values:
- [tex]\(\pi(-4) = 105\)[/tex]
- [tex]\(\pi(-3) = 0\)[/tex]
- [tex]\(\pi(-2) = -15\)[/tex]
- [tex]\(\pi(-1) = 0\)[/tex]
- [tex]\(\pi(0) = 9\)[/tex]
- [tex]\(\pi(1) = 0\)[/tex]
- [tex]\(\pi(2) = -15\)[/tex]
- [tex]\(\pi(3) = 0\)[/tex]
- [tex]\(\pi(4) = 105\)[/tex]
- [tex]\(\pi(5) = 384\)[/tex]
The smallest value in the table is [tex]\(-15\)[/tex].
We see two points where [tex]\(\pi(x) = -15\)[/tex]:
- [tex]\(\pi(-2) = -15\)[/tex]
- [tex]\(\pi(2) = -15\)[/tex]
Although both points [tex]\((-2, -15)\)[/tex] and [tex]\((2, -15)\)[/tex] share the same function value, we need to determine which one is a local minimum. In this context, we validate this by verifying adjacent values to ensure that they are higher than the minimum.
Here's the validation:
- For [tex]\(x = -2\)[/tex], the adjacent values are [tex]\(\pi(-3) = 0\)[/tex] and [tex]\(\pi(-1) = 0\)[/tex], which are both higher than [tex]\(-15\)[/tex].
- For [tex]\(x = 2\)[/tex], the adjacent values are [tex]\(\pi(1) = 0\)[/tex] and [tex]\(\pi(3) = 0\)[/tex], which are both higher than [tex]\(-15\)[/tex].
Thus, both [tex]\((-2, -15)\)[/tex] and [tex]\((2, -15)\)[/tex] can be considered local minima, but typically we report the first occurrence or the one explicitly asked for.
Therefore, the ordered pair that represents a local minimum of the function [tex]\(\pi(x)\)[/tex], according to the table, is:
[tex]\(\boxed{(-2, -15)}\)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.