Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the local minimum of the given function [tex]\(\pi(x)\)[/tex] from the table of values, we need to identify the point where the function attains the lowest value.
Here's the table again for reference:
[tex]\[ \begin{array}{|c|c|} \hline x & \pi(x) \\ \hline -4 & 105 \\ \hline -3 & 0 \\ \hline -2 & -15 \\ \hline -1 & 0 \\ \hline 0 & 9 \\ \hline 1 & 0 \\ \hline 2 & -15 \\ \hline 3 & 0 \\ \hline 4 & 105 \\ \hline 5 & 384 \\ \hline \end{array} \][/tex]
We need to:
1. Look for all the values of [tex]\(\pi(x)\)[/tex] and identify the smallest value.
2. Check that the corresponding [tex]\(x\)[/tex] value produces the global minimum or local minimum by considering neighboring values.
From the table, we observe the following values:
- [tex]\(\pi(-4) = 105\)[/tex]
- [tex]\(\pi(-3) = 0\)[/tex]
- [tex]\(\pi(-2) = -15\)[/tex]
- [tex]\(\pi(-1) = 0\)[/tex]
- [tex]\(\pi(0) = 9\)[/tex]
- [tex]\(\pi(1) = 0\)[/tex]
- [tex]\(\pi(2) = -15\)[/tex]
- [tex]\(\pi(3) = 0\)[/tex]
- [tex]\(\pi(4) = 105\)[/tex]
- [tex]\(\pi(5) = 384\)[/tex]
The smallest value in the table is [tex]\(-15\)[/tex].
We see two points where [tex]\(\pi(x) = -15\)[/tex]:
- [tex]\(\pi(-2) = -15\)[/tex]
- [tex]\(\pi(2) = -15\)[/tex]
Although both points [tex]\((-2, -15)\)[/tex] and [tex]\((2, -15)\)[/tex] share the same function value, we need to determine which one is a local minimum. In this context, we validate this by verifying adjacent values to ensure that they are higher than the minimum.
Here's the validation:
- For [tex]\(x = -2\)[/tex], the adjacent values are [tex]\(\pi(-3) = 0\)[/tex] and [tex]\(\pi(-1) = 0\)[/tex], which are both higher than [tex]\(-15\)[/tex].
- For [tex]\(x = 2\)[/tex], the adjacent values are [tex]\(\pi(1) = 0\)[/tex] and [tex]\(\pi(3) = 0\)[/tex], which are both higher than [tex]\(-15\)[/tex].
Thus, both [tex]\((-2, -15)\)[/tex] and [tex]\((2, -15)\)[/tex] can be considered local minima, but typically we report the first occurrence or the one explicitly asked for.
Therefore, the ordered pair that represents a local minimum of the function [tex]\(\pi(x)\)[/tex], according to the table, is:
[tex]\(\boxed{(-2, -15)}\)[/tex]
Here's the table again for reference:
[tex]\[ \begin{array}{|c|c|} \hline x & \pi(x) \\ \hline -4 & 105 \\ \hline -3 & 0 \\ \hline -2 & -15 \\ \hline -1 & 0 \\ \hline 0 & 9 \\ \hline 1 & 0 \\ \hline 2 & -15 \\ \hline 3 & 0 \\ \hline 4 & 105 \\ \hline 5 & 384 \\ \hline \end{array} \][/tex]
We need to:
1. Look for all the values of [tex]\(\pi(x)\)[/tex] and identify the smallest value.
2. Check that the corresponding [tex]\(x\)[/tex] value produces the global minimum or local minimum by considering neighboring values.
From the table, we observe the following values:
- [tex]\(\pi(-4) = 105\)[/tex]
- [tex]\(\pi(-3) = 0\)[/tex]
- [tex]\(\pi(-2) = -15\)[/tex]
- [tex]\(\pi(-1) = 0\)[/tex]
- [tex]\(\pi(0) = 9\)[/tex]
- [tex]\(\pi(1) = 0\)[/tex]
- [tex]\(\pi(2) = -15\)[/tex]
- [tex]\(\pi(3) = 0\)[/tex]
- [tex]\(\pi(4) = 105\)[/tex]
- [tex]\(\pi(5) = 384\)[/tex]
The smallest value in the table is [tex]\(-15\)[/tex].
We see two points where [tex]\(\pi(x) = -15\)[/tex]:
- [tex]\(\pi(-2) = -15\)[/tex]
- [tex]\(\pi(2) = -15\)[/tex]
Although both points [tex]\((-2, -15)\)[/tex] and [tex]\((2, -15)\)[/tex] share the same function value, we need to determine which one is a local minimum. In this context, we validate this by verifying adjacent values to ensure that they are higher than the minimum.
Here's the validation:
- For [tex]\(x = -2\)[/tex], the adjacent values are [tex]\(\pi(-3) = 0\)[/tex] and [tex]\(\pi(-1) = 0\)[/tex], which are both higher than [tex]\(-15\)[/tex].
- For [tex]\(x = 2\)[/tex], the adjacent values are [tex]\(\pi(1) = 0\)[/tex] and [tex]\(\pi(3) = 0\)[/tex], which are both higher than [tex]\(-15\)[/tex].
Thus, both [tex]\((-2, -15)\)[/tex] and [tex]\((2, -15)\)[/tex] can be considered local minima, but typically we report the first occurrence or the one explicitly asked for.
Therefore, the ordered pair that represents a local minimum of the function [tex]\(\pi(x)\)[/tex], according to the table, is:
[tex]\(\boxed{(-2, -15)}\)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.