Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To divide the polynomial [tex]\(4x^2 + 5x - 6\)[/tex] by [tex]\(x + 2\)[/tex], we can use polynomial long division. Let's go through the steps:
### Step 1: Set up the division
We want to divide:
[tex]\[ 4x^2 + 5x - 6 \][/tex]
by:
[tex]\[ x + 2 \][/tex]
### Step 2: Divide the leading terms
Divide the leading term of the numerator by the leading term of the denominator:
[tex]\[ \frac{4x^2}{x} = 4x \][/tex]
### Step 3: Multiply and subtract
Multiply [tex]\(4x\)[/tex] by the divisor [tex]\(x + 2\)[/tex]:
[tex]\[ 4x \cdot (x + 2) = 4x^2 + 8x \][/tex]
Subtract this from the original polynomial:
[tex]\[ (4x^2 + 5x - 6) - (4x^2 + 8x) = (4x^2 + 5x - 6) - 4x^2 - 8x = -3x - 6 \][/tex]
### Step 4: Repeat the process
Repeat the process with [tex]\(-3x - 6\)[/tex]:
1. Divide the leading term [tex]\(-3x\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ \frac{-3x}{x} = -3 \][/tex]
2. Multiply [tex]\(-3\)[/tex] by the divisor [tex]\(x + 2\)[/tex]:
[tex]\[ -3 \cdot (x + 2) = -3x - 6 \][/tex]
3. Subtract this from the current remainder:
[tex]\[ (-3x - 6) - (-3x - 6) = 0 \][/tex]
### Step 5: Conclusion
Since the remainder is 0, the division results in a quotient of [tex]\(4x - 3\)[/tex] and a remainder of 0.
Thus, the solution to the division of [tex]\(4x^2 + 5x - 6\)[/tex] by [tex]\(x + 2\)[/tex] is:
[tex]\[ \boxed{(4x - 3, 0)} \][/tex]
### Step 1: Set up the division
We want to divide:
[tex]\[ 4x^2 + 5x - 6 \][/tex]
by:
[tex]\[ x + 2 \][/tex]
### Step 2: Divide the leading terms
Divide the leading term of the numerator by the leading term of the denominator:
[tex]\[ \frac{4x^2}{x} = 4x \][/tex]
### Step 3: Multiply and subtract
Multiply [tex]\(4x\)[/tex] by the divisor [tex]\(x + 2\)[/tex]:
[tex]\[ 4x \cdot (x + 2) = 4x^2 + 8x \][/tex]
Subtract this from the original polynomial:
[tex]\[ (4x^2 + 5x - 6) - (4x^2 + 8x) = (4x^2 + 5x - 6) - 4x^2 - 8x = -3x - 6 \][/tex]
### Step 4: Repeat the process
Repeat the process with [tex]\(-3x - 6\)[/tex]:
1. Divide the leading term [tex]\(-3x\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ \frac{-3x}{x} = -3 \][/tex]
2. Multiply [tex]\(-3\)[/tex] by the divisor [tex]\(x + 2\)[/tex]:
[tex]\[ -3 \cdot (x + 2) = -3x - 6 \][/tex]
3. Subtract this from the current remainder:
[tex]\[ (-3x - 6) - (-3x - 6) = 0 \][/tex]
### Step 5: Conclusion
Since the remainder is 0, the division results in a quotient of [tex]\(4x - 3\)[/tex] and a remainder of 0.
Thus, the solution to the division of [tex]\(4x^2 + 5x - 6\)[/tex] by [tex]\(x + 2\)[/tex] is:
[tex]\[ \boxed{(4x - 3, 0)} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.