Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the limit [tex]\(\lim _{x \rightarrow 3}\left(\frac{x^2-9}{x-3} + \sqrt{x^2+7}\right)\)[/tex], let's break it down step by step.
First, we look at the expression inside the limit:
[tex]\[ \frac{x^2 - 9}{x - 3} + \sqrt{x^2 + 7} \][/tex]
### Step 1: Simplify the Rational Function [tex]\(\frac{x^2 - 9}{x - 3}\)[/tex]
The term [tex]\(\frac{x^2 - 9}{x - 3}\)[/tex] can be simplified. Notice that [tex]\(x^2 - 9\)[/tex] can be factored as a difference of squares:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
Thus,
[tex]\[ \frac{x^2 - 9}{x - 3} = \frac{(x - 3)(x + 3)}{x - 3} \][/tex]
For [tex]\(x \neq 3\)[/tex], the term [tex]\((x - 3)\)[/tex] in the numerator and denominator cancels out:
[tex]\[ \frac{(x - 3)(x + 3)}{x - 3} = x + 3 \][/tex]
### Step 2: Substitute the Simplified Expression Back
Now the expression becomes:
[tex]\[ x + 3 + \sqrt{x^2 + 7} \][/tex]
### Step 3: Evaluate the Limit
Now, we need to evaluate the limit of this simplified expression as [tex]\(x\)[/tex] approaches 3:
[tex]\[ \lim_{x \to 3} \left(x + 3 + \sqrt{x^2 + 7}\right) \][/tex]
Substitute [tex]\(x = 3\)[/tex]:
[tex]\[ 3 + 3 + \sqrt{3^2 + 7} \][/tex]
Simplify inside the square root:
[tex]\[ 3 + 3 + \sqrt{9 + 7} = 3 + 3 + \sqrt{16} = 3 + 3 + 4 = 10 \][/tex]
### Conclusion
Therefore,
[tex]\[ \lim _{x \rightarrow 3}\left(\frac{x^2-9}{x-3} + \sqrt{x^2+7}\right) = 10 \][/tex]
First, we look at the expression inside the limit:
[tex]\[ \frac{x^2 - 9}{x - 3} + \sqrt{x^2 + 7} \][/tex]
### Step 1: Simplify the Rational Function [tex]\(\frac{x^2 - 9}{x - 3}\)[/tex]
The term [tex]\(\frac{x^2 - 9}{x - 3}\)[/tex] can be simplified. Notice that [tex]\(x^2 - 9\)[/tex] can be factored as a difference of squares:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
Thus,
[tex]\[ \frac{x^2 - 9}{x - 3} = \frac{(x - 3)(x + 3)}{x - 3} \][/tex]
For [tex]\(x \neq 3\)[/tex], the term [tex]\((x - 3)\)[/tex] in the numerator and denominator cancels out:
[tex]\[ \frac{(x - 3)(x + 3)}{x - 3} = x + 3 \][/tex]
### Step 2: Substitute the Simplified Expression Back
Now the expression becomes:
[tex]\[ x + 3 + \sqrt{x^2 + 7} \][/tex]
### Step 3: Evaluate the Limit
Now, we need to evaluate the limit of this simplified expression as [tex]\(x\)[/tex] approaches 3:
[tex]\[ \lim_{x \to 3} \left(x + 3 + \sqrt{x^2 + 7}\right) \][/tex]
Substitute [tex]\(x = 3\)[/tex]:
[tex]\[ 3 + 3 + \sqrt{3^2 + 7} \][/tex]
Simplify inside the square root:
[tex]\[ 3 + 3 + \sqrt{9 + 7} = 3 + 3 + \sqrt{16} = 3 + 3 + 4 = 10 \][/tex]
### Conclusion
Therefore,
[tex]\[ \lim _{x \rightarrow 3}\left(\frac{x^2-9}{x-3} + \sqrt{x^2+7}\right) = 10 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.