Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the limit [tex]\(\lim _{x \rightarrow 3}\left(\frac{x^2-9}{x-3} + \sqrt{x^2+7}\right)\)[/tex], let's break it down step by step.
First, we look at the expression inside the limit:
[tex]\[ \frac{x^2 - 9}{x - 3} + \sqrt{x^2 + 7} \][/tex]
### Step 1: Simplify the Rational Function [tex]\(\frac{x^2 - 9}{x - 3}\)[/tex]
The term [tex]\(\frac{x^2 - 9}{x - 3}\)[/tex] can be simplified. Notice that [tex]\(x^2 - 9\)[/tex] can be factored as a difference of squares:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
Thus,
[tex]\[ \frac{x^2 - 9}{x - 3} = \frac{(x - 3)(x + 3)}{x - 3} \][/tex]
For [tex]\(x \neq 3\)[/tex], the term [tex]\((x - 3)\)[/tex] in the numerator and denominator cancels out:
[tex]\[ \frac{(x - 3)(x + 3)}{x - 3} = x + 3 \][/tex]
### Step 2: Substitute the Simplified Expression Back
Now the expression becomes:
[tex]\[ x + 3 + \sqrt{x^2 + 7} \][/tex]
### Step 3: Evaluate the Limit
Now, we need to evaluate the limit of this simplified expression as [tex]\(x\)[/tex] approaches 3:
[tex]\[ \lim_{x \to 3} \left(x + 3 + \sqrt{x^2 + 7}\right) \][/tex]
Substitute [tex]\(x = 3\)[/tex]:
[tex]\[ 3 + 3 + \sqrt{3^2 + 7} \][/tex]
Simplify inside the square root:
[tex]\[ 3 + 3 + \sqrt{9 + 7} = 3 + 3 + \sqrt{16} = 3 + 3 + 4 = 10 \][/tex]
### Conclusion
Therefore,
[tex]\[ \lim _{x \rightarrow 3}\left(\frac{x^2-9}{x-3} + \sqrt{x^2+7}\right) = 10 \][/tex]
First, we look at the expression inside the limit:
[tex]\[ \frac{x^2 - 9}{x - 3} + \sqrt{x^2 + 7} \][/tex]
### Step 1: Simplify the Rational Function [tex]\(\frac{x^2 - 9}{x - 3}\)[/tex]
The term [tex]\(\frac{x^2 - 9}{x - 3}\)[/tex] can be simplified. Notice that [tex]\(x^2 - 9\)[/tex] can be factored as a difference of squares:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
Thus,
[tex]\[ \frac{x^2 - 9}{x - 3} = \frac{(x - 3)(x + 3)}{x - 3} \][/tex]
For [tex]\(x \neq 3\)[/tex], the term [tex]\((x - 3)\)[/tex] in the numerator and denominator cancels out:
[tex]\[ \frac{(x - 3)(x + 3)}{x - 3} = x + 3 \][/tex]
### Step 2: Substitute the Simplified Expression Back
Now the expression becomes:
[tex]\[ x + 3 + \sqrt{x^2 + 7} \][/tex]
### Step 3: Evaluate the Limit
Now, we need to evaluate the limit of this simplified expression as [tex]\(x\)[/tex] approaches 3:
[tex]\[ \lim_{x \to 3} \left(x + 3 + \sqrt{x^2 + 7}\right) \][/tex]
Substitute [tex]\(x = 3\)[/tex]:
[tex]\[ 3 + 3 + \sqrt{3^2 + 7} \][/tex]
Simplify inside the square root:
[tex]\[ 3 + 3 + \sqrt{9 + 7} = 3 + 3 + \sqrt{16} = 3 + 3 + 4 = 10 \][/tex]
### Conclusion
Therefore,
[tex]\[ \lim _{x \rightarrow 3}\left(\frac{x^2-9}{x-3} + \sqrt{x^2+7}\right) = 10 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.