Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's go through each part of the question step-by-step.
### Given Data:
- Principal amount, [tex]\(P = \text{Rs. }18,082\)[/tex]
- Annual rate of interest, [tex]\(R = 20\%\)[/tex]
- Time, [tex]\(T = 2\)[/tex] years
### Formulas Involved:
1. Yearly Compound Interest:
[tex]\[ CI_{\text{yearly}} = P \left( \left(1 + \frac{R}{100}\right)^T - 1 \right) \][/tex]
2. Half-Yearly Compound Interest:
[tex]\[ CI_{\text{half-yearly}} = P \left( \left(1 + \frac{R}{200}\right)^{2T} - 1 \right) \][/tex]
### Step-by-Step Solution:
#### (a) Calculation of Yearly Compound Interest:
Using the formula for yearly compound interest:
[tex]\[ CI_{\text{yearly}} = P \left( \left(1 + \frac{R}{100}\right)^T - 1 \right) \][/tex]
Substitute the given values into the formula:
[tex]\[ CI_{\text{yearly}} = 18082 \left( \left(1 + \frac{20}{100}\right)^2 - 1 \right) \][/tex]
After performing the calculation, we find that the yearly compound interest is:
[tex]\[ CI_{\text{yearly}} \approx \text{Rs. } 7956.08 \][/tex]
#### (b) Calculation of Half-Yearly Compound Interest:
Using the formula for half-yearly compound interest:
[tex]\[ CI_{\text{half-yearly}} = P \left( \left(1 + \frac{R}{200}\right)^{2T} - 1 \right) \][/tex]
Substitute the given values into the formula:
[tex]\[ CI_{\text{half-yearly}} = 18082 \left( \left(1 + \frac{20}{200}\right)^{4} - 1 \right) \][/tex]
After performing the calculation, we find that the half-yearly compound interest is:
[tex]\[ CI_{\text{half-yearly}} \approx \text{Rs. } 8391.86 \][/tex]
#### (c) Difference Between Half-Yearly and Yearly Compound Interest:
To find the difference between the half-yearly and yearly compound interest:
[tex]\[ \text{Difference} = CI_{\text{half-yearly}} - CI_{\text{yearly}} \][/tex]
Using the values obtained:
[tex]\[ \text{Difference} \approx 8391.86 - 7956.08 = \text{Rs. } 435.78 \][/tex]
### Conclusion:
1. Yearly Compound Interest after 2 years: Rs. 7956.08
2. Half-Yearly Compound Interest after 2 years: Rs. 8391.86
3. Difference between Half-Yearly and Yearly Compound Interest: Rs. 435.78
### Given Data:
- Principal amount, [tex]\(P = \text{Rs. }18,082\)[/tex]
- Annual rate of interest, [tex]\(R = 20\%\)[/tex]
- Time, [tex]\(T = 2\)[/tex] years
### Formulas Involved:
1. Yearly Compound Interest:
[tex]\[ CI_{\text{yearly}} = P \left( \left(1 + \frac{R}{100}\right)^T - 1 \right) \][/tex]
2. Half-Yearly Compound Interest:
[tex]\[ CI_{\text{half-yearly}} = P \left( \left(1 + \frac{R}{200}\right)^{2T} - 1 \right) \][/tex]
### Step-by-Step Solution:
#### (a) Calculation of Yearly Compound Interest:
Using the formula for yearly compound interest:
[tex]\[ CI_{\text{yearly}} = P \left( \left(1 + \frac{R}{100}\right)^T - 1 \right) \][/tex]
Substitute the given values into the formula:
[tex]\[ CI_{\text{yearly}} = 18082 \left( \left(1 + \frac{20}{100}\right)^2 - 1 \right) \][/tex]
After performing the calculation, we find that the yearly compound interest is:
[tex]\[ CI_{\text{yearly}} \approx \text{Rs. } 7956.08 \][/tex]
#### (b) Calculation of Half-Yearly Compound Interest:
Using the formula for half-yearly compound interest:
[tex]\[ CI_{\text{half-yearly}} = P \left( \left(1 + \frac{R}{200}\right)^{2T} - 1 \right) \][/tex]
Substitute the given values into the formula:
[tex]\[ CI_{\text{half-yearly}} = 18082 \left( \left(1 + \frac{20}{200}\right)^{4} - 1 \right) \][/tex]
After performing the calculation, we find that the half-yearly compound interest is:
[tex]\[ CI_{\text{half-yearly}} \approx \text{Rs. } 8391.86 \][/tex]
#### (c) Difference Between Half-Yearly and Yearly Compound Interest:
To find the difference between the half-yearly and yearly compound interest:
[tex]\[ \text{Difference} = CI_{\text{half-yearly}} - CI_{\text{yearly}} \][/tex]
Using the values obtained:
[tex]\[ \text{Difference} \approx 8391.86 - 7956.08 = \text{Rs. } 435.78 \][/tex]
### Conclusion:
1. Yearly Compound Interest after 2 years: Rs. 7956.08
2. Half-Yearly Compound Interest after 2 years: Rs. 8391.86
3. Difference between Half-Yearly and Yearly Compound Interest: Rs. 435.78
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.