Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve for the length of the longer leg [tex]\( l \)[/tex] in terms of the hypotenuse [tex]\( h \)[/tex] of a right triangle where the hypotenuse is three times as long as the shorter leg, follow these steps:
1. Let the shorter leg be [tex]\( x \)[/tex]. According to the problem, the hypotenuse [tex]\( h \)[/tex] is three times the shorter leg. Therefore, we have:
[tex]\[ h = 3x \][/tex]
2. Use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. This can be written as:
[tex]\[ h^2 = x^2 + l^2 \][/tex]
3. Substitute [tex]\( h = 3x \)[/tex] into the Pythagorean theorem equation:
[tex]\[ (3x)^2 = x^2 + l^2 \][/tex]
Simplify:
[tex]\[ 9x^2 = x^2 + l^2 \][/tex]
4. Solve for [tex]\( l^2 \)[/tex]:
[tex]\[ 9x^2 - x^2 = l^2 \][/tex]
[tex]\[ 8x^2 = l^2 \][/tex]
5. Take the positive square root of both sides to solve for [tex]\( l \)[/tex]:
[tex]\[ l = \sqrt{8x^2} \][/tex]
[tex]\[ l = x\sqrt{8} \][/tex]
6. Substitute [tex]\( x = \frac{h}{3} \)[/tex] (from [tex]\( h = 3x \)[/tex]) back into the equation for [tex]\( l \)[/tex]:
[tex]\[ l = \left(\frac{h}{3}\right) \sqrt{8} \][/tex]
7. Simplify the expression:
[tex]\[ l = \frac{h \sqrt{8}}{3} \][/tex]
So the length of the longer leg [tex]\( l \)[/tex] in terms of [tex]\( h \)[/tex] is:
[tex]\[ l = \frac{h \sqrt{8}}{3} \][/tex]
Here’s how the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] fit into your given format [tex]\( l = \frac{a \sqrt{b} h}{c} \)[/tex]:
- [tex]\( a = 1 \)[/tex] (since [tex]\( a \)[/tex] is multiplying [tex]\( \sqrt{8} \)[/tex])
- [tex]\( b = 8 \)[/tex]
- [tex]\( c = 3 \)[/tex]
Thus, the correct expression is:
[tex]\[ l = \frac{1 \sqrt{8} h}{3} \][/tex]
1. Let the shorter leg be [tex]\( x \)[/tex]. According to the problem, the hypotenuse [tex]\( h \)[/tex] is three times the shorter leg. Therefore, we have:
[tex]\[ h = 3x \][/tex]
2. Use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. This can be written as:
[tex]\[ h^2 = x^2 + l^2 \][/tex]
3. Substitute [tex]\( h = 3x \)[/tex] into the Pythagorean theorem equation:
[tex]\[ (3x)^2 = x^2 + l^2 \][/tex]
Simplify:
[tex]\[ 9x^2 = x^2 + l^2 \][/tex]
4. Solve for [tex]\( l^2 \)[/tex]:
[tex]\[ 9x^2 - x^2 = l^2 \][/tex]
[tex]\[ 8x^2 = l^2 \][/tex]
5. Take the positive square root of both sides to solve for [tex]\( l \)[/tex]:
[tex]\[ l = \sqrt{8x^2} \][/tex]
[tex]\[ l = x\sqrt{8} \][/tex]
6. Substitute [tex]\( x = \frac{h}{3} \)[/tex] (from [tex]\( h = 3x \)[/tex]) back into the equation for [tex]\( l \)[/tex]:
[tex]\[ l = \left(\frac{h}{3}\right) \sqrt{8} \][/tex]
7. Simplify the expression:
[tex]\[ l = \frac{h \sqrt{8}}{3} \][/tex]
So the length of the longer leg [tex]\( l \)[/tex] in terms of [tex]\( h \)[/tex] is:
[tex]\[ l = \frac{h \sqrt{8}}{3} \][/tex]
Here’s how the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] fit into your given format [tex]\( l = \frac{a \sqrt{b} h}{c} \)[/tex]:
- [tex]\( a = 1 \)[/tex] (since [tex]\( a \)[/tex] is multiplying [tex]\( \sqrt{8} \)[/tex])
- [tex]\( b = 8 \)[/tex]
- [tex]\( c = 3 \)[/tex]
Thus, the correct expression is:
[tex]\[ l = \frac{1 \sqrt{8} h}{3} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.