Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Type the correct answer in the box.

A printer creates a right triangular card where the hypotenuse, [tex]\( h \)[/tex], is three times as long as the shorter leg. What is the length of the longer leg, [tex]\( l \)[/tex], in terms of [tex]\( h \)[/tex]? Write the answer in simplest form.

[tex]\[ l = \frac{\sqrt{b} \cdot h}{c} \][/tex]


Sagot :

To solve for the length of the longer leg [tex]\( l \)[/tex] in terms of the hypotenuse [tex]\( h \)[/tex] of a right triangle where the hypotenuse is three times as long as the shorter leg, follow these steps:

1. Let the shorter leg be [tex]\( x \)[/tex]. According to the problem, the hypotenuse [tex]\( h \)[/tex] is three times the shorter leg. Therefore, we have:
[tex]\[ h = 3x \][/tex]

2. Use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. This can be written as:
[tex]\[ h^2 = x^2 + l^2 \][/tex]

3. Substitute [tex]\( h = 3x \)[/tex] into the Pythagorean theorem equation:
[tex]\[ (3x)^2 = x^2 + l^2 \][/tex]
Simplify:
[tex]\[ 9x^2 = x^2 + l^2 \][/tex]

4. Solve for [tex]\( l^2 \)[/tex]:
[tex]\[ 9x^2 - x^2 = l^2 \][/tex]
[tex]\[ 8x^2 = l^2 \][/tex]

5. Take the positive square root of both sides to solve for [tex]\( l \)[/tex]:
[tex]\[ l = \sqrt{8x^2} \][/tex]
[tex]\[ l = x\sqrt{8} \][/tex]

6. Substitute [tex]\( x = \frac{h}{3} \)[/tex] (from [tex]\( h = 3x \)[/tex]) back into the equation for [tex]\( l \)[/tex]:
[tex]\[ l = \left(\frac{h}{3}\right) \sqrt{8} \][/tex]

7. Simplify the expression:
[tex]\[ l = \frac{h \sqrt{8}}{3} \][/tex]

So the length of the longer leg [tex]\( l \)[/tex] in terms of [tex]\( h \)[/tex] is:

[tex]\[ l = \frac{h \sqrt{8}}{3} \][/tex]

Here’s how the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] fit into your given format [tex]\( l = \frac{a \sqrt{b} h}{c} \)[/tex]:

- [tex]\( a = 1 \)[/tex] (since [tex]\( a \)[/tex] is multiplying [tex]\( \sqrt{8} \)[/tex])
- [tex]\( b = 8 \)[/tex]
- [tex]\( c = 3 \)[/tex]

Thus, the correct expression is:

[tex]\[ l = \frac{1 \sqrt{8} h}{3} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.