Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the value of [tex]\( x \)[/tex] such that [tex]\( \sin(x) = \cos(32^\circ) \)[/tex] for [tex]\( 0^\circ < x < 90^\circ \)[/tex], we can use the trigonometric identity that relates sine and cosine:
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
From the given problem, we have:
[tex]\[ \sin(x) = \cos(32^\circ) \][/tex]
Using the identity, we can rewrite [tex]\(\cos(32^\circ)\)[/tex]:
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
Thus, the equation becomes:
[tex]\[ \cos(90^\circ - x) = \cos(32^\circ) \][/tex]
For these two cosine values to be equal, their arguments must be equal (since cosine is a periodic function, and we are considering angles in the range [tex]\(0^\circ < x < 90^\circ\)[/tex] where it is uniquely one-to-one):
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
To find [tex]\( x \)[/tex], we solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
Subtract [tex]\( 32^\circ \)[/tex] from both sides:
[tex]\[ 90^\circ - 32^\circ = x \][/tex]
So:
[tex]\[ x = 58^\circ \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\(\sin(x) = \cos(32^\circ)\)[/tex] is:
[tex]\[ \boxed{58^\circ} \][/tex]
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
From the given problem, we have:
[tex]\[ \sin(x) = \cos(32^\circ) \][/tex]
Using the identity, we can rewrite [tex]\(\cos(32^\circ)\)[/tex]:
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
Thus, the equation becomes:
[tex]\[ \cos(90^\circ - x) = \cos(32^\circ) \][/tex]
For these two cosine values to be equal, their arguments must be equal (since cosine is a periodic function, and we are considering angles in the range [tex]\(0^\circ < x < 90^\circ\)[/tex] where it is uniquely one-to-one):
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
To find [tex]\( x \)[/tex], we solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
Subtract [tex]\( 32^\circ \)[/tex] from both sides:
[tex]\[ 90^\circ - 32^\circ = x \][/tex]
So:
[tex]\[ x = 58^\circ \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\(\sin(x) = \cos(32^\circ)\)[/tex] is:
[tex]\[ \boxed{58^\circ} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.