Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the value of [tex]\( x \)[/tex] such that [tex]\( \sin(x) = \cos(32^\circ) \)[/tex] for [tex]\( 0^\circ < x < 90^\circ \)[/tex], we can use the trigonometric identity that relates sine and cosine:
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
From the given problem, we have:
[tex]\[ \sin(x) = \cos(32^\circ) \][/tex]
Using the identity, we can rewrite [tex]\(\cos(32^\circ)\)[/tex]:
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
Thus, the equation becomes:
[tex]\[ \cos(90^\circ - x) = \cos(32^\circ) \][/tex]
For these two cosine values to be equal, their arguments must be equal (since cosine is a periodic function, and we are considering angles in the range [tex]\(0^\circ < x < 90^\circ\)[/tex] where it is uniquely one-to-one):
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
To find [tex]\( x \)[/tex], we solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
Subtract [tex]\( 32^\circ \)[/tex] from both sides:
[tex]\[ 90^\circ - 32^\circ = x \][/tex]
So:
[tex]\[ x = 58^\circ \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\(\sin(x) = \cos(32^\circ)\)[/tex] is:
[tex]\[ \boxed{58^\circ} \][/tex]
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
From the given problem, we have:
[tex]\[ \sin(x) = \cos(32^\circ) \][/tex]
Using the identity, we can rewrite [tex]\(\cos(32^\circ)\)[/tex]:
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
Thus, the equation becomes:
[tex]\[ \cos(90^\circ - x) = \cos(32^\circ) \][/tex]
For these two cosine values to be equal, their arguments must be equal (since cosine is a periodic function, and we are considering angles in the range [tex]\(0^\circ < x < 90^\circ\)[/tex] where it is uniquely one-to-one):
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
To find [tex]\( x \)[/tex], we solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
Subtract [tex]\( 32^\circ \)[/tex] from both sides:
[tex]\[ 90^\circ - 32^\circ = x \][/tex]
So:
[tex]\[ x = 58^\circ \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\(\sin(x) = \cos(32^\circ)\)[/tex] is:
[tex]\[ \boxed{58^\circ} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.