At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the value of [tex]\( x \)[/tex] such that [tex]\( \sin(x) = \cos(32^\circ) \)[/tex] for [tex]\( 0^\circ < x < 90^\circ \)[/tex], we can use the trigonometric identity that relates sine and cosine:
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
From the given problem, we have:
[tex]\[ \sin(x) = \cos(32^\circ) \][/tex]
Using the identity, we can rewrite [tex]\(\cos(32^\circ)\)[/tex]:
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
Thus, the equation becomes:
[tex]\[ \cos(90^\circ - x) = \cos(32^\circ) \][/tex]
For these two cosine values to be equal, their arguments must be equal (since cosine is a periodic function, and we are considering angles in the range [tex]\(0^\circ < x < 90^\circ\)[/tex] where it is uniquely one-to-one):
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
To find [tex]\( x \)[/tex], we solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
Subtract [tex]\( 32^\circ \)[/tex] from both sides:
[tex]\[ 90^\circ - 32^\circ = x \][/tex]
So:
[tex]\[ x = 58^\circ \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\(\sin(x) = \cos(32^\circ)\)[/tex] is:
[tex]\[ \boxed{58^\circ} \][/tex]
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
From the given problem, we have:
[tex]\[ \sin(x) = \cos(32^\circ) \][/tex]
Using the identity, we can rewrite [tex]\(\cos(32^\circ)\)[/tex]:
[tex]\[ \sin(x) = \cos(90^\circ - x) \][/tex]
Thus, the equation becomes:
[tex]\[ \cos(90^\circ - x) = \cos(32^\circ) \][/tex]
For these two cosine values to be equal, their arguments must be equal (since cosine is a periodic function, and we are considering angles in the range [tex]\(0^\circ < x < 90^\circ\)[/tex] where it is uniquely one-to-one):
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
To find [tex]\( x \)[/tex], we solve for [tex]\( x \)[/tex] in the equation:
[tex]\[ 90^\circ - x = 32^\circ \][/tex]
Subtract [tex]\( 32^\circ \)[/tex] from both sides:
[tex]\[ 90^\circ - 32^\circ = x \][/tex]
So:
[tex]\[ x = 58^\circ \][/tex]
Therefore, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\(\sin(x) = \cos(32^\circ)\)[/tex] is:
[tex]\[ \boxed{58^\circ} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.