At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let’s break down the given problem step by step:
We need to find the simplest form of the product of the fractions and determine the excluded values for [tex]\( x \)[/tex].
The given product of fractions is:
[tex]\[ \frac{x^2 - 3x - 10}{x^2 - 6x + 5} \cdot \frac{x - 2}{x - 5} \][/tex]
1. Factor the Numerators and Denominators:
The numerator of the first fraction, [tex]\( x^2 - 3x - 10 \)[/tex], can be factored into:
[tex]\[ x^2 - 3x - 10 = (x - 5)(x + 2) \][/tex]
The denominator of the first fraction, [tex]\( x^2 - 6x + 5 \)[/tex], can be factored into:
[tex]\[ x^2 - 6x + 5 = (x - 1)(x - 5) \][/tex]
The numerator of the second fraction is [tex]\( x - 2 \)[/tex] which is already in its simplest form.
The denominator of the second fraction is [tex]\( x - 5 \)[/tex] which is already in its simplest form.
2. Write the Product with Factored Expressions:
[tex]\[ \frac{(x - 5)(x + 2)}{(x - 1)(x - 5)} \cdot \frac{x - 2}{x - 5} \][/tex]
3. Simplify by Canceling Common Factors:
Cancel [tex]\( x - 5 \)[/tex] from the numerator and denominator (note that [tex]\( x \neq 5 \)[/tex]):
[tex]\[ \frac{(x + 2)}{(x - 1)} \cdot \frac{x - 2}{x - 5} \][/tex]
This leaves us with:
[tex]\[ \frac{(x + 2)(x - 2)}{(x - 1)(x - 5)} \][/tex]
4. Multiply the Remaining Expressions:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
Since [tex]\( x^2 - 4 = (x + 2)(x - 2) \)[/tex] (this matches our factored forms previously), the simplest form of the product is indeed:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
5. Determine Excluded Values:
The original problem has factors in the denominator where [tex]\( x - 1 \)[/tex], [tex]\( x - 5 \)[/tex] appear. Thus, these values for [tex]\( x \)[/tex] will make the denominator zero and are excluded from the domain.
- From [tex]\( x - 1 = 0 \Rightarrow x = 1 \)[/tex]
- From [tex]\( x - 5 = 0 \Rightarrow x = 5 \)[/tex]
Therefore, the excluded values of [tex]\( x \)[/tex] are [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Putting it all together:
The simplest form of the product has:
- Numerator: [tex]\( x^2 - 4 \)[/tex]
- Denominator: [tex]\( x^2 - 6x + 5 \)[/tex]
- Excluded value of [tex]\( x \)[/tex] is [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex]
So, the correct selections are:
The simplest form of this product has a numerator of [tex]\( x^2 - 4 \)[/tex] and a denominator of [tex]\( x^2 - 6x + 5 \)[/tex]. The expression has an excluded value of [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
We need to find the simplest form of the product of the fractions and determine the excluded values for [tex]\( x \)[/tex].
The given product of fractions is:
[tex]\[ \frac{x^2 - 3x - 10}{x^2 - 6x + 5} \cdot \frac{x - 2}{x - 5} \][/tex]
1. Factor the Numerators and Denominators:
The numerator of the first fraction, [tex]\( x^2 - 3x - 10 \)[/tex], can be factored into:
[tex]\[ x^2 - 3x - 10 = (x - 5)(x + 2) \][/tex]
The denominator of the first fraction, [tex]\( x^2 - 6x + 5 \)[/tex], can be factored into:
[tex]\[ x^2 - 6x + 5 = (x - 1)(x - 5) \][/tex]
The numerator of the second fraction is [tex]\( x - 2 \)[/tex] which is already in its simplest form.
The denominator of the second fraction is [tex]\( x - 5 \)[/tex] which is already in its simplest form.
2. Write the Product with Factored Expressions:
[tex]\[ \frac{(x - 5)(x + 2)}{(x - 1)(x - 5)} \cdot \frac{x - 2}{x - 5} \][/tex]
3. Simplify by Canceling Common Factors:
Cancel [tex]\( x - 5 \)[/tex] from the numerator and denominator (note that [tex]\( x \neq 5 \)[/tex]):
[tex]\[ \frac{(x + 2)}{(x - 1)} \cdot \frac{x - 2}{x - 5} \][/tex]
This leaves us with:
[tex]\[ \frac{(x + 2)(x - 2)}{(x - 1)(x - 5)} \][/tex]
4. Multiply the Remaining Expressions:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
Since [tex]\( x^2 - 4 = (x + 2)(x - 2) \)[/tex] (this matches our factored forms previously), the simplest form of the product is indeed:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
5. Determine Excluded Values:
The original problem has factors in the denominator where [tex]\( x - 1 \)[/tex], [tex]\( x - 5 \)[/tex] appear. Thus, these values for [tex]\( x \)[/tex] will make the denominator zero and are excluded from the domain.
- From [tex]\( x - 1 = 0 \Rightarrow x = 1 \)[/tex]
- From [tex]\( x - 5 = 0 \Rightarrow x = 5 \)[/tex]
Therefore, the excluded values of [tex]\( x \)[/tex] are [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Putting it all together:
The simplest form of the product has:
- Numerator: [tex]\( x^2 - 4 \)[/tex]
- Denominator: [tex]\( x^2 - 6x + 5 \)[/tex]
- Excluded value of [tex]\( x \)[/tex] is [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex]
So, the correct selections are:
The simplest form of this product has a numerator of [tex]\( x^2 - 4 \)[/tex] and a denominator of [tex]\( x^2 - 6x + 5 \)[/tex]. The expression has an excluded value of [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.