Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let’s break down the given problem step by step:
We need to find the simplest form of the product of the fractions and determine the excluded values for [tex]\( x \)[/tex].
The given product of fractions is:
[tex]\[ \frac{x^2 - 3x - 10}{x^2 - 6x + 5} \cdot \frac{x - 2}{x - 5} \][/tex]
1. Factor the Numerators and Denominators:
The numerator of the first fraction, [tex]\( x^2 - 3x - 10 \)[/tex], can be factored into:
[tex]\[ x^2 - 3x - 10 = (x - 5)(x + 2) \][/tex]
The denominator of the first fraction, [tex]\( x^2 - 6x + 5 \)[/tex], can be factored into:
[tex]\[ x^2 - 6x + 5 = (x - 1)(x - 5) \][/tex]
The numerator of the second fraction is [tex]\( x - 2 \)[/tex] which is already in its simplest form.
The denominator of the second fraction is [tex]\( x - 5 \)[/tex] which is already in its simplest form.
2. Write the Product with Factored Expressions:
[tex]\[ \frac{(x - 5)(x + 2)}{(x - 1)(x - 5)} \cdot \frac{x - 2}{x - 5} \][/tex]
3. Simplify by Canceling Common Factors:
Cancel [tex]\( x - 5 \)[/tex] from the numerator and denominator (note that [tex]\( x \neq 5 \)[/tex]):
[tex]\[ \frac{(x + 2)}{(x - 1)} \cdot \frac{x - 2}{x - 5} \][/tex]
This leaves us with:
[tex]\[ \frac{(x + 2)(x - 2)}{(x - 1)(x - 5)} \][/tex]
4. Multiply the Remaining Expressions:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
Since [tex]\( x^2 - 4 = (x + 2)(x - 2) \)[/tex] (this matches our factored forms previously), the simplest form of the product is indeed:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
5. Determine Excluded Values:
The original problem has factors in the denominator where [tex]\( x - 1 \)[/tex], [tex]\( x - 5 \)[/tex] appear. Thus, these values for [tex]\( x \)[/tex] will make the denominator zero and are excluded from the domain.
- From [tex]\( x - 1 = 0 \Rightarrow x = 1 \)[/tex]
- From [tex]\( x - 5 = 0 \Rightarrow x = 5 \)[/tex]
Therefore, the excluded values of [tex]\( x \)[/tex] are [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Putting it all together:
The simplest form of the product has:
- Numerator: [tex]\( x^2 - 4 \)[/tex]
- Denominator: [tex]\( x^2 - 6x + 5 \)[/tex]
- Excluded value of [tex]\( x \)[/tex] is [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex]
So, the correct selections are:
The simplest form of this product has a numerator of [tex]\( x^2 - 4 \)[/tex] and a denominator of [tex]\( x^2 - 6x + 5 \)[/tex]. The expression has an excluded value of [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
We need to find the simplest form of the product of the fractions and determine the excluded values for [tex]\( x \)[/tex].
The given product of fractions is:
[tex]\[ \frac{x^2 - 3x - 10}{x^2 - 6x + 5} \cdot \frac{x - 2}{x - 5} \][/tex]
1. Factor the Numerators and Denominators:
The numerator of the first fraction, [tex]\( x^2 - 3x - 10 \)[/tex], can be factored into:
[tex]\[ x^2 - 3x - 10 = (x - 5)(x + 2) \][/tex]
The denominator of the first fraction, [tex]\( x^2 - 6x + 5 \)[/tex], can be factored into:
[tex]\[ x^2 - 6x + 5 = (x - 1)(x - 5) \][/tex]
The numerator of the second fraction is [tex]\( x - 2 \)[/tex] which is already in its simplest form.
The denominator of the second fraction is [tex]\( x - 5 \)[/tex] which is already in its simplest form.
2. Write the Product with Factored Expressions:
[tex]\[ \frac{(x - 5)(x + 2)}{(x - 1)(x - 5)} \cdot \frac{x - 2}{x - 5} \][/tex]
3. Simplify by Canceling Common Factors:
Cancel [tex]\( x - 5 \)[/tex] from the numerator and denominator (note that [tex]\( x \neq 5 \)[/tex]):
[tex]\[ \frac{(x + 2)}{(x - 1)} \cdot \frac{x - 2}{x - 5} \][/tex]
This leaves us with:
[tex]\[ \frac{(x + 2)(x - 2)}{(x - 1)(x - 5)} \][/tex]
4. Multiply the Remaining Expressions:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
Since [tex]\( x^2 - 4 = (x + 2)(x - 2) \)[/tex] (this matches our factored forms previously), the simplest form of the product is indeed:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
5. Determine Excluded Values:
The original problem has factors in the denominator where [tex]\( x - 1 \)[/tex], [tex]\( x - 5 \)[/tex] appear. Thus, these values for [tex]\( x \)[/tex] will make the denominator zero and are excluded from the domain.
- From [tex]\( x - 1 = 0 \Rightarrow x = 1 \)[/tex]
- From [tex]\( x - 5 = 0 \Rightarrow x = 5 \)[/tex]
Therefore, the excluded values of [tex]\( x \)[/tex] are [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Putting it all together:
The simplest form of the product has:
- Numerator: [tex]\( x^2 - 4 \)[/tex]
- Denominator: [tex]\( x^2 - 6x + 5 \)[/tex]
- Excluded value of [tex]\( x \)[/tex] is [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex]
So, the correct selections are:
The simplest form of this product has a numerator of [tex]\( x^2 - 4 \)[/tex] and a denominator of [tex]\( x^2 - 6x + 5 \)[/tex]. The expression has an excluded value of [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.