Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let’s break down the given problem step by step:
We need to find the simplest form of the product of the fractions and determine the excluded values for [tex]\( x \)[/tex].
The given product of fractions is:
[tex]\[ \frac{x^2 - 3x - 10}{x^2 - 6x + 5} \cdot \frac{x - 2}{x - 5} \][/tex]
1. Factor the Numerators and Denominators:
The numerator of the first fraction, [tex]\( x^2 - 3x - 10 \)[/tex], can be factored into:
[tex]\[ x^2 - 3x - 10 = (x - 5)(x + 2) \][/tex]
The denominator of the first fraction, [tex]\( x^2 - 6x + 5 \)[/tex], can be factored into:
[tex]\[ x^2 - 6x + 5 = (x - 1)(x - 5) \][/tex]
The numerator of the second fraction is [tex]\( x - 2 \)[/tex] which is already in its simplest form.
The denominator of the second fraction is [tex]\( x - 5 \)[/tex] which is already in its simplest form.
2. Write the Product with Factored Expressions:
[tex]\[ \frac{(x - 5)(x + 2)}{(x - 1)(x - 5)} \cdot \frac{x - 2}{x - 5} \][/tex]
3. Simplify by Canceling Common Factors:
Cancel [tex]\( x - 5 \)[/tex] from the numerator and denominator (note that [tex]\( x \neq 5 \)[/tex]):
[tex]\[ \frac{(x + 2)}{(x - 1)} \cdot \frac{x - 2}{x - 5} \][/tex]
This leaves us with:
[tex]\[ \frac{(x + 2)(x - 2)}{(x - 1)(x - 5)} \][/tex]
4. Multiply the Remaining Expressions:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
Since [tex]\( x^2 - 4 = (x + 2)(x - 2) \)[/tex] (this matches our factored forms previously), the simplest form of the product is indeed:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
5. Determine Excluded Values:
The original problem has factors in the denominator where [tex]\( x - 1 \)[/tex], [tex]\( x - 5 \)[/tex] appear. Thus, these values for [tex]\( x \)[/tex] will make the denominator zero and are excluded from the domain.
- From [tex]\( x - 1 = 0 \Rightarrow x = 1 \)[/tex]
- From [tex]\( x - 5 = 0 \Rightarrow x = 5 \)[/tex]
Therefore, the excluded values of [tex]\( x \)[/tex] are [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Putting it all together:
The simplest form of the product has:
- Numerator: [tex]\( x^2 - 4 \)[/tex]
- Denominator: [tex]\( x^2 - 6x + 5 \)[/tex]
- Excluded value of [tex]\( x \)[/tex] is [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex]
So, the correct selections are:
The simplest form of this product has a numerator of [tex]\( x^2 - 4 \)[/tex] and a denominator of [tex]\( x^2 - 6x + 5 \)[/tex]. The expression has an excluded value of [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
We need to find the simplest form of the product of the fractions and determine the excluded values for [tex]\( x \)[/tex].
The given product of fractions is:
[tex]\[ \frac{x^2 - 3x - 10}{x^2 - 6x + 5} \cdot \frac{x - 2}{x - 5} \][/tex]
1. Factor the Numerators and Denominators:
The numerator of the first fraction, [tex]\( x^2 - 3x - 10 \)[/tex], can be factored into:
[tex]\[ x^2 - 3x - 10 = (x - 5)(x + 2) \][/tex]
The denominator of the first fraction, [tex]\( x^2 - 6x + 5 \)[/tex], can be factored into:
[tex]\[ x^2 - 6x + 5 = (x - 1)(x - 5) \][/tex]
The numerator of the second fraction is [tex]\( x - 2 \)[/tex] which is already in its simplest form.
The denominator of the second fraction is [tex]\( x - 5 \)[/tex] which is already in its simplest form.
2. Write the Product with Factored Expressions:
[tex]\[ \frac{(x - 5)(x + 2)}{(x - 1)(x - 5)} \cdot \frac{x - 2}{x - 5} \][/tex]
3. Simplify by Canceling Common Factors:
Cancel [tex]\( x - 5 \)[/tex] from the numerator and denominator (note that [tex]\( x \neq 5 \)[/tex]):
[tex]\[ \frac{(x + 2)}{(x - 1)} \cdot \frac{x - 2}{x - 5} \][/tex]
This leaves us with:
[tex]\[ \frac{(x + 2)(x - 2)}{(x - 1)(x - 5)} \][/tex]
4. Multiply the Remaining Expressions:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
Since [tex]\( x^2 - 4 = (x + 2)(x - 2) \)[/tex] (this matches our factored forms previously), the simplest form of the product is indeed:
[tex]\[ \frac{x^2 - 4}{x^2 - 6x + 5} \][/tex]
5. Determine Excluded Values:
The original problem has factors in the denominator where [tex]\( x - 1 \)[/tex], [tex]\( x - 5 \)[/tex] appear. Thus, these values for [tex]\( x \)[/tex] will make the denominator zero and are excluded from the domain.
- From [tex]\( x - 1 = 0 \Rightarrow x = 1 \)[/tex]
- From [tex]\( x - 5 = 0 \Rightarrow x = 5 \)[/tex]
Therefore, the excluded values of [tex]\( x \)[/tex] are [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Putting it all together:
The simplest form of the product has:
- Numerator: [tex]\( x^2 - 4 \)[/tex]
- Denominator: [tex]\( x^2 - 6x + 5 \)[/tex]
- Excluded value of [tex]\( x \)[/tex] is [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex]
So, the correct selections are:
The simplest form of this product has a numerator of [tex]\( x^2 - 4 \)[/tex] and a denominator of [tex]\( x^2 - 6x + 5 \)[/tex]. The expression has an excluded value of [tex]\( x = 1 \)[/tex] and [tex]\( x = 5 \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.