At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze each of the given equations to determine which one represents the line with a slope of 2 and a y-intercept of 4.
### Equation 1: [tex]\( y = 2x + 4 \)[/tex]
- The general form of a linear equation is [tex]\( y = mx + b \)[/tex] where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
- In this equation, [tex]\( y = 2x + 4 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is 2.
- The y-intercept ([tex]\( b \)[/tex]) is 4.
- This equation matches the given criteria (a slope of 2 and a y-intercept of 4).
### Equation 2: [tex]\( y = \frac{1}{2}x + 4 \)[/tex]
- In this equation, [tex]\( y = \frac{1}{2}x + 4 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is [tex]\(\frac{1}{2}\)[/tex].
- The y-intercept ([tex]\( b \)[/tex]) is 4.
- This equation has the correct y-intercept but the incorrect slope. The slope should be 2, not [tex]\(\frac{1}{2}\)[/tex].
### Equation 3: [tex]\( y = \frac{1}{2}x - 4 \)[/tex]
- In this equation, [tex]\( y = \frac{1}{2}x - 4 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is [tex]\(\frac{1}{2}\)[/tex].
- The y-intercept ([tex]\( b \)[/tex]) is -4.
- This equation has neither the correct slope nor the correct y-intercept.
### Equation 4: [tex]\( y = 2x - 4 \)[/tex]
- In this equation, [tex]\( y = 2x - 4 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is 2.
- The y-intercept ([tex]\( b \)[/tex]) is -4.
- This equation has the correct slope but the incorrect y-intercept. The y-intercept should be 4, not -4.
After evaluating all the equations, the one that correctly represents a line with a slope of 2 and a y-intercept of 4 is:
[tex]\[ y = 2x + 4 \][/tex]
Therefore, the correct equation is the first one, and the index of this equation in the list is [tex]\( 0 \)[/tex].
### Equation 1: [tex]\( y = 2x + 4 \)[/tex]
- The general form of a linear equation is [tex]\( y = mx + b \)[/tex] where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
- In this equation, [tex]\( y = 2x + 4 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is 2.
- The y-intercept ([tex]\( b \)[/tex]) is 4.
- This equation matches the given criteria (a slope of 2 and a y-intercept of 4).
### Equation 2: [tex]\( y = \frac{1}{2}x + 4 \)[/tex]
- In this equation, [tex]\( y = \frac{1}{2}x + 4 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is [tex]\(\frac{1}{2}\)[/tex].
- The y-intercept ([tex]\( b \)[/tex]) is 4.
- This equation has the correct y-intercept but the incorrect slope. The slope should be 2, not [tex]\(\frac{1}{2}\)[/tex].
### Equation 3: [tex]\( y = \frac{1}{2}x - 4 \)[/tex]
- In this equation, [tex]\( y = \frac{1}{2}x - 4 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is [tex]\(\frac{1}{2}\)[/tex].
- The y-intercept ([tex]\( b \)[/tex]) is -4.
- This equation has neither the correct slope nor the correct y-intercept.
### Equation 4: [tex]\( y = 2x - 4 \)[/tex]
- In this equation, [tex]\( y = 2x - 4 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is 2.
- The y-intercept ([tex]\( b \)[/tex]) is -4.
- This equation has the correct slope but the incorrect y-intercept. The y-intercept should be 4, not -4.
After evaluating all the equations, the one that correctly represents a line with a slope of 2 and a y-intercept of 4 is:
[tex]\[ y = 2x + 4 \][/tex]
Therefore, the correct equation is the first one, and the index of this equation in the list is [tex]\( 0 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.