Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which function is increasing over the interval [tex]\((-∞, ∞)\)[/tex], we need to analyze the derivatives of each function.
### Function [tex]\( j(x) = x^2 + 8x + 1 \)[/tex]
1. To find if [tex]\( j(x) \)[/tex] is increasing, we need to calculate its derivative.
2. The derivative is [tex]\( j'(x) = 2x + 8 \)[/tex].
3. This derivative is positive when [tex]\( x > -4 \)[/tex] and negative when [tex]\( x < -4 \)[/tex].
4. Therefore, [tex]\( j(x) \)[/tex] is not increasing for all [tex]\( x \in (-∞, ∞) \)[/tex].
### Function [tex]\( g(x) = -4(2^x) \)[/tex]
1. To determine if [tex]\( g(x) \)[/tex] is increasing, we calculate its derivative.
2. The derivative is [tex]\( g'(x) = -4 (\ln(2)) 2^x \)[/tex].
3. Since [tex]\(-4 (\ln(2)) 2^x\)[/tex] is always negative for all [tex]\(x\)[/tex], [tex]\( g(x) \)[/tex] is always decreasing.
4. Thus, [tex]\( g(x) \)[/tex] is not increasing for all [tex]\( x \in (-∞, ∞) \)[/tex].
### Function [tex]\( f(x) = -3x + 7 \)[/tex]
1. To determine if [tex]\( f(x) \)[/tex] is increasing, we calculate its derivative.
2. The derivative is [tex]\( f'(x) = -3 \)[/tex].
3. Since [tex]\(-3\)[/tex] is a constant negative number, [tex]\( f(x) \)[/tex] is always decreasing.
4. Thus, [tex]\( f(x) \)[/tex] is not increasing for all [tex]\( x \in (-∞, ∞) \)[/tex].
### Function [tex]\( h(x) = 2^x - 1 \)[/tex]
1. To determine if [tex]\( h(x) \)[/tex] is increasing, we calculate its derivative.
2. The derivative is [tex]\( h'(x) = (\ln(2)) 2^x \)[/tex].
3. Since [tex]\(\ln(2)\)[/tex] is a positive constant and [tex]\( 2^x \)[/tex] is always positive for all [tex]\( x \)[/tex], [tex]\( (\ln(2)) 2^x \)[/tex] is always positive.
4. Thus, [tex]\( h(x) \)[/tex] is increasing for all [tex]\( x \in (-∞, ∞) \)[/tex].
Therefore, the function that is increasing on the interval [tex]\((-∞, ∞)\)[/tex] is:
[tex]\[ \boxed{h(x) = 2^x - 1} \][/tex]
The correct answer is:
[tex]\[ \text{D. } h(x) = 2^x - 1 \][/tex]
### Function [tex]\( j(x) = x^2 + 8x + 1 \)[/tex]
1. To find if [tex]\( j(x) \)[/tex] is increasing, we need to calculate its derivative.
2. The derivative is [tex]\( j'(x) = 2x + 8 \)[/tex].
3. This derivative is positive when [tex]\( x > -4 \)[/tex] and negative when [tex]\( x < -4 \)[/tex].
4. Therefore, [tex]\( j(x) \)[/tex] is not increasing for all [tex]\( x \in (-∞, ∞) \)[/tex].
### Function [tex]\( g(x) = -4(2^x) \)[/tex]
1. To determine if [tex]\( g(x) \)[/tex] is increasing, we calculate its derivative.
2. The derivative is [tex]\( g'(x) = -4 (\ln(2)) 2^x \)[/tex].
3. Since [tex]\(-4 (\ln(2)) 2^x\)[/tex] is always negative for all [tex]\(x\)[/tex], [tex]\( g(x) \)[/tex] is always decreasing.
4. Thus, [tex]\( g(x) \)[/tex] is not increasing for all [tex]\( x \in (-∞, ∞) \)[/tex].
### Function [tex]\( f(x) = -3x + 7 \)[/tex]
1. To determine if [tex]\( f(x) \)[/tex] is increasing, we calculate its derivative.
2. The derivative is [tex]\( f'(x) = -3 \)[/tex].
3. Since [tex]\(-3\)[/tex] is a constant negative number, [tex]\( f(x) \)[/tex] is always decreasing.
4. Thus, [tex]\( f(x) \)[/tex] is not increasing for all [tex]\( x \in (-∞, ∞) \)[/tex].
### Function [tex]\( h(x) = 2^x - 1 \)[/tex]
1. To determine if [tex]\( h(x) \)[/tex] is increasing, we calculate its derivative.
2. The derivative is [tex]\( h'(x) = (\ln(2)) 2^x \)[/tex].
3. Since [tex]\(\ln(2)\)[/tex] is a positive constant and [tex]\( 2^x \)[/tex] is always positive for all [tex]\( x \)[/tex], [tex]\( (\ln(2)) 2^x \)[/tex] is always positive.
4. Thus, [tex]\( h(x) \)[/tex] is increasing for all [tex]\( x \in (-∞, ∞) \)[/tex].
Therefore, the function that is increasing on the interval [tex]\((-∞, ∞)\)[/tex] is:
[tex]\[ \boxed{h(x) = 2^x - 1} \][/tex]
The correct answer is:
[tex]\[ \text{D. } h(x) = 2^x - 1 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.