Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine whether events [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are independent, we need to examine their probabilities and determine if they meet the criterion for independence. Specifically, we need to check if the conditional probability [tex]\( P(Z \mid B) \)[/tex] is equal to the marginal probability [tex]\( P(Z) \)[/tex].
First, let's define the relevant probabilities:
1. Total Number of Observations: [tex]\( 660 \)[/tex]
2. Number of Observations in [tex]\( Z \)[/tex]: [tex]\( 297 \)[/tex]
3. Number of Observations in [tex]\( B \)[/tex]: [tex]\( 280 \)[/tex]
4. Number of Observations in both [tex]\( Z \)[/tex] and [tex]\( B \)[/tex]: [tex]\( 126 \)[/tex]
Next, we calculate the probabilities:
1. Calculate [tex]\( P(Z) \)[/tex]:
[tex]\[ P(Z) = \frac{\text{Number of Observations in } Z}{\text{Total Number of Observations}} = \frac{297}{660} \][/tex]
2. Calculate [tex]\( P(B) \)[/tex]:
[tex]\[ P(B) = \frac{\text{Number of Observations in } B}{\text{Total Number of Observations}} = \frac{280}{660} \][/tex]
3. Calculate [tex]\( P(Z \mid B) \)[/tex]:
[tex]\[ P(Z \mid B) = \frac{\text{Number of Observations in both } Z \text{ and } B}{\text{Number of Observations in } B} = \frac{126}{280} \][/tex]
To determine if [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are independent, we need to check if:
[tex]\[ P(Z \mid B) = P(Z) \][/tex]
After calculating these probabilities, we found that:
[tex]\[ P(Z \mid B) = P(Z) \][/tex]
Since we have determined that [tex]\( P(Z \mid B) \)[/tex] is equal to [tex]\( P(Z) \)[/tex], this means [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are indeed independent events according to the definition. Therefore, the correct statement is:
[tex]\[ \text{Z and B are independent events because } P(Z \mid B) = P(Z). \][/tex]
First, let's define the relevant probabilities:
1. Total Number of Observations: [tex]\( 660 \)[/tex]
2. Number of Observations in [tex]\( Z \)[/tex]: [tex]\( 297 \)[/tex]
3. Number of Observations in [tex]\( B \)[/tex]: [tex]\( 280 \)[/tex]
4. Number of Observations in both [tex]\( Z \)[/tex] and [tex]\( B \)[/tex]: [tex]\( 126 \)[/tex]
Next, we calculate the probabilities:
1. Calculate [tex]\( P(Z) \)[/tex]:
[tex]\[ P(Z) = \frac{\text{Number of Observations in } Z}{\text{Total Number of Observations}} = \frac{297}{660} \][/tex]
2. Calculate [tex]\( P(B) \)[/tex]:
[tex]\[ P(B) = \frac{\text{Number of Observations in } B}{\text{Total Number of Observations}} = \frac{280}{660} \][/tex]
3. Calculate [tex]\( P(Z \mid B) \)[/tex]:
[tex]\[ P(Z \mid B) = \frac{\text{Number of Observations in both } Z \text{ and } B}{\text{Number of Observations in } B} = \frac{126}{280} \][/tex]
To determine if [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are independent, we need to check if:
[tex]\[ P(Z \mid B) = P(Z) \][/tex]
After calculating these probabilities, we found that:
[tex]\[ P(Z \mid B) = P(Z) \][/tex]
Since we have determined that [tex]\( P(Z \mid B) \)[/tex] is equal to [tex]\( P(Z) \)[/tex], this means [tex]\( Z \)[/tex] and [tex]\( B \)[/tex] are indeed independent events according to the definition. Therefore, the correct statement is:
[tex]\[ \text{Z and B are independent events because } P(Z \mid B) = P(Z). \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.