Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To simplify the given expression:
[tex]\[ \frac{x^2 - 2x}{x^2 - 10x + 25} \div \frac{6x^2 - 12x}{x^2 - 25} \][/tex]
we follow these steps:
1. Simplify each part of the given fractions:
- The numerator of the first fraction:
[tex]\[ x^2 - 2x = x(x - 2) \][/tex]
- The denominator of the first fraction:
[tex]\[ x^2 - 10x + 25 = (x - 5)^2 \][/tex]
- The numerator of the second fraction:
[tex]\[ 6x^2 - 12x = 6x(x - 2) \][/tex]
- The denominator of the second fraction:
[tex]\[ x^2 - 25 = (x - 5)(x + 5) \][/tex]
2. Rewrite the expression with the simplified parts:
[tex]\[ \frac{x(x - 2)}{(x - 5)^2} \div \frac{6x(x - 2)}{(x - 5)(x + 5)} \][/tex]
3. Convert the division of fractions into a multiplication by inverting the second fraction:
[tex]\[ \frac{x(x - 2)}{(x - 5)^2} \times \frac{(x - 5)(x + 5)}{6x(x - 2)} \][/tex]
4. Simplify by canceling out common factors:
- The [tex]\(x(x - 2)\)[/tex] terms cancel out in the numerator and denominator.
- The [tex]\((x - 5)\)[/tex] term cancels out with one of the [tex]\((x - 5)\)[/tex] terms in the denominator.
Thus, we are left with:
[tex]\[ \frac{x + 5}{6(x - 5)} \][/tex]
Therefore, the simplest form of the given expression is:
[tex]\[ \boxed{\frac{x+5}{6(x-5)}} \][/tex]
[tex]\[ \frac{x^2 - 2x}{x^2 - 10x + 25} \div \frac{6x^2 - 12x}{x^2 - 25} \][/tex]
we follow these steps:
1. Simplify each part of the given fractions:
- The numerator of the first fraction:
[tex]\[ x^2 - 2x = x(x - 2) \][/tex]
- The denominator of the first fraction:
[tex]\[ x^2 - 10x + 25 = (x - 5)^2 \][/tex]
- The numerator of the second fraction:
[tex]\[ 6x^2 - 12x = 6x(x - 2) \][/tex]
- The denominator of the second fraction:
[tex]\[ x^2 - 25 = (x - 5)(x + 5) \][/tex]
2. Rewrite the expression with the simplified parts:
[tex]\[ \frac{x(x - 2)}{(x - 5)^2} \div \frac{6x(x - 2)}{(x - 5)(x + 5)} \][/tex]
3. Convert the division of fractions into a multiplication by inverting the second fraction:
[tex]\[ \frac{x(x - 2)}{(x - 5)^2} \times \frac{(x - 5)(x + 5)}{6x(x - 2)} \][/tex]
4. Simplify by canceling out common factors:
- The [tex]\(x(x - 2)\)[/tex] terms cancel out in the numerator and denominator.
- The [tex]\((x - 5)\)[/tex] term cancels out with one of the [tex]\((x - 5)\)[/tex] terms in the denominator.
Thus, we are left with:
[tex]\[ \frac{x + 5}{6(x - 5)} \][/tex]
Therefore, the simplest form of the given expression is:
[tex]\[ \boxed{\frac{x+5}{6(x-5)}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.