Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the equilibrium constant expression, [tex]\(K_i\)[/tex], for the dissociation of the weak acid [tex]\( \text{H}_2 \text{SO}_3 \)[/tex], we must consider its balanced dissociation reaction:
[tex]\[ \text{H}_2 \text{SO}_3 \text{(aq)} \leftrightarrow \text{H}^+ \text{(aq)} + \text{HSO}_3^- \text{(aq)} \][/tex]
The equilibrium constant expression for a dissociation reaction is based on the concentrations of the products divided by the concentration of the reactants.
The general form of the equilibrium constant expression for the dissociation reaction [tex]\( A \leftrightarrow B + C \)[/tex] is given by:
[tex]\[ K_i = \frac{[\text{B}][\text{C}]}{[\text{A}]} \][/tex]
For our specific reaction:
- The reactant is [tex]\( \text{H}_2 \text{SO}_3 \)[/tex]
- The products are [tex]\( \text{H}^+ \)[/tex] and [tex]\( \text{HSO}_3^- \)[/tex]
Thus, the equilibrium constant expression [tex]\( K_i \)[/tex] for the given reaction is:
[tex]\[ K_i = \frac{[\text{H}^+][\text{HSO}_3^-]}{[\text{H}_2 \text{SO}_3]} \][/tex]
Examining the given options, the correct expression is:
[tex]\[ K_i = \left[ \text{H}^+ \right] \left[ \text{HSO}_3^- \right] / \left[ \text{H}_2 \text{SO}_3 \right] \][/tex]
Thus, the correct option is:
[tex]\[ Ki = \left[ H^+ \right] \left[ HSO_3^- \right] / \left[ H_2SO_3 \right] \][/tex]
[tex]\[ \text{H}_2 \text{SO}_3 \text{(aq)} \leftrightarrow \text{H}^+ \text{(aq)} + \text{HSO}_3^- \text{(aq)} \][/tex]
The equilibrium constant expression for a dissociation reaction is based on the concentrations of the products divided by the concentration of the reactants.
The general form of the equilibrium constant expression for the dissociation reaction [tex]\( A \leftrightarrow B + C \)[/tex] is given by:
[tex]\[ K_i = \frac{[\text{B}][\text{C}]}{[\text{A}]} \][/tex]
For our specific reaction:
- The reactant is [tex]\( \text{H}_2 \text{SO}_3 \)[/tex]
- The products are [tex]\( \text{H}^+ \)[/tex] and [tex]\( \text{HSO}_3^- \)[/tex]
Thus, the equilibrium constant expression [tex]\( K_i \)[/tex] for the given reaction is:
[tex]\[ K_i = \frac{[\text{H}^+][\text{HSO}_3^-]}{[\text{H}_2 \text{SO}_3]} \][/tex]
Examining the given options, the correct expression is:
[tex]\[ K_i = \left[ \text{H}^+ \right] \left[ \text{HSO}_3^- \right] / \left[ \text{H}_2 \text{SO}_3 \right] \][/tex]
Thus, the correct option is:
[tex]\[ Ki = \left[ H^+ \right] \left[ HSO_3^- \right] / \left[ H_2SO_3 \right] \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.