Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's analyze the given table step-by-step to determine the true statement about the quadratic function [tex]\( g(x) \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|c|} \hline $x$ & -5 & -4 & -3 & -2 & -1 & 0 \\ \hline $g(x)$ & -1 & 0 & -1 & -4 & -9 & -16 \\ \hline \end{tabular} \][/tex]
1. We need to determine where the minimum value of the function [tex]\( g(x) \)[/tex] occurs. The minimum value is the smallest value of [tex]\( g(x) \)[/tex] present in the table.
2. We observe the values of [tex]\( g(x) \)[/tex]:
- When [tex]\( x = -5 \)[/tex], [tex]\( g(x) = -1 \)[/tex]
- When [tex]\( x = -4 \)[/tex], [tex]\( g(x) = 0 \)[/tex]
- When [tex]\( x = -3 \)[/tex], [tex]\( g(x) = -1 \)[/tex]
- When [tex]\( x = -2 \)[/tex], [tex]\( g(x) = -4 \)[/tex]
- When [tex]\( x = -1 \)[/tex], [tex]\( g(x) = -9 \)[/tex]
- When [tex]\( x = 0 \)[/tex], [tex]\( g(x) = -16 \)[/tex]
3. From these values, we see:
- The maximum value of [tex]\( g(x) \)[/tex] is [tex]\( 0 \)[/tex] at [tex]\( x = -4 \)[/tex].
- The minimum value of [tex]\( g(x) \)[/tex] is [tex]\( -16 \)[/tex] at [tex]\( x = 0 \)[/tex].
4. Since the minimum value of the function [tex]\( g(x) \)[/tex] occurs at the point where [tex]\( x = 0 \)[/tex], this point is the y-intercept of the function.
Therefore, the correct statement is:
D. The minimum occurs at the function's y-intercept.
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|c|} \hline $x$ & -5 & -4 & -3 & -2 & -1 & 0 \\ \hline $g(x)$ & -1 & 0 & -1 & -4 & -9 & -16 \\ \hline \end{tabular} \][/tex]
1. We need to determine where the minimum value of the function [tex]\( g(x) \)[/tex] occurs. The minimum value is the smallest value of [tex]\( g(x) \)[/tex] present in the table.
2. We observe the values of [tex]\( g(x) \)[/tex]:
- When [tex]\( x = -5 \)[/tex], [tex]\( g(x) = -1 \)[/tex]
- When [tex]\( x = -4 \)[/tex], [tex]\( g(x) = 0 \)[/tex]
- When [tex]\( x = -3 \)[/tex], [tex]\( g(x) = -1 \)[/tex]
- When [tex]\( x = -2 \)[/tex], [tex]\( g(x) = -4 \)[/tex]
- When [tex]\( x = -1 \)[/tex], [tex]\( g(x) = -9 \)[/tex]
- When [tex]\( x = 0 \)[/tex], [tex]\( g(x) = -16 \)[/tex]
3. From these values, we see:
- The maximum value of [tex]\( g(x) \)[/tex] is [tex]\( 0 \)[/tex] at [tex]\( x = -4 \)[/tex].
- The minimum value of [tex]\( g(x) \)[/tex] is [tex]\( -16 \)[/tex] at [tex]\( x = 0 \)[/tex].
4. Since the minimum value of the function [tex]\( g(x) \)[/tex] occurs at the point where [tex]\( x = 0 \)[/tex], this point is the y-intercept of the function.
Therefore, the correct statement is:
D. The minimum occurs at the function's y-intercept.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.