Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, let's carefully follow the mathematical steps needed.
Given:
1. Together, Sean and Colleen can clear the yard in 24 minutes.
2. Working alone, Sean takes 20 minutes longer than Colleen.
3. Let [tex]\( c \)[/tex] be the number of minutes it takes Colleen to finish the job alone.
4. The rational equation modeling this situation is:
[tex]\[ \frac{1}{c} + \frac{1}{c+20} = \frac{1}{24} \][/tex]
Step-by-step solution:
1. Start with the given rational equation:
[tex]\[ \frac{1}{c} + \frac{1}{c+20} = \frac{1}{24} \][/tex]
2. Multiply through by [tex]\( 24c(c+20) \)[/tex] to clear the denominators:
[tex]\[ 24(c+20) + 24c = c(c+20) \][/tex]
3. Simplify and expand both sides of the equation:
[tex]\[ 24c + 480 + 24c = c^2 + 20c \][/tex]
4. Combine like terms:
[tex]\[ 48c + 480 = c^2 + 20c \][/tex]
5. Move all terms to one side to form a quadratic equation:
[tex]\[ c^2 + 20c - 48c - 480 = 0 \][/tex]
Which simplifies to:
[tex]\[ c^2 - 28c - 480 = 0 \][/tex]
6. Solve the quadratic equation using the quadratic formula, [tex]\( c = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = -28 \)[/tex], and [tex]\( c = -480 \)[/tex]:
[tex]\[ c = \frac{28 \pm \sqrt{28^2 - 4 \cdot 1 \cdot (-480)}}{2 \cdot 1} \][/tex]
Simplify inside the square root:
[tex]\[ c = \frac{28 \pm \sqrt{784 + 1920}}{2} \][/tex]
[tex]\[ c = \frac{28 \pm \sqrt{2704}}{2} \][/tex]
[tex]\[ \sqrt{2704} = 52 \][/tex]
So:
[tex]\[ c = \frac{28 \pm 52}{2} \][/tex]
7. This gives two potential solutions:
[tex]\[ c = \frac{28 + 52}{2} = \frac{80}{2} = 40 \][/tex]
[tex]\[ c = \frac{28 - 52}{2} = \frac{-24}{2} = -12 \][/tex]
8. Since [tex]\( c \)[/tex] represents time, it must be a positive value. Therefore, we discard [tex]\( -12 \)[/tex].
Hence, the time it would take Colleen to clear the yard alone is:
[tex]\[ \boxed{40} \][/tex]
So the correct answer is:
D. 40 minutes
Given:
1. Together, Sean and Colleen can clear the yard in 24 minutes.
2. Working alone, Sean takes 20 minutes longer than Colleen.
3. Let [tex]\( c \)[/tex] be the number of minutes it takes Colleen to finish the job alone.
4. The rational equation modeling this situation is:
[tex]\[ \frac{1}{c} + \frac{1}{c+20} = \frac{1}{24} \][/tex]
Step-by-step solution:
1. Start with the given rational equation:
[tex]\[ \frac{1}{c} + \frac{1}{c+20} = \frac{1}{24} \][/tex]
2. Multiply through by [tex]\( 24c(c+20) \)[/tex] to clear the denominators:
[tex]\[ 24(c+20) + 24c = c(c+20) \][/tex]
3. Simplify and expand both sides of the equation:
[tex]\[ 24c + 480 + 24c = c^2 + 20c \][/tex]
4. Combine like terms:
[tex]\[ 48c + 480 = c^2 + 20c \][/tex]
5. Move all terms to one side to form a quadratic equation:
[tex]\[ c^2 + 20c - 48c - 480 = 0 \][/tex]
Which simplifies to:
[tex]\[ c^2 - 28c - 480 = 0 \][/tex]
6. Solve the quadratic equation using the quadratic formula, [tex]\( c = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = -28 \)[/tex], and [tex]\( c = -480 \)[/tex]:
[tex]\[ c = \frac{28 \pm \sqrt{28^2 - 4 \cdot 1 \cdot (-480)}}{2 \cdot 1} \][/tex]
Simplify inside the square root:
[tex]\[ c = \frac{28 \pm \sqrt{784 + 1920}}{2} \][/tex]
[tex]\[ c = \frac{28 \pm \sqrt{2704}}{2} \][/tex]
[tex]\[ \sqrt{2704} = 52 \][/tex]
So:
[tex]\[ c = \frac{28 \pm 52}{2} \][/tex]
7. This gives two potential solutions:
[tex]\[ c = \frac{28 + 52}{2} = \frac{80}{2} = 40 \][/tex]
[tex]\[ c = \frac{28 - 52}{2} = \frac{-24}{2} = -12 \][/tex]
8. Since [tex]\( c \)[/tex] represents time, it must be a positive value. Therefore, we discard [tex]\( -12 \)[/tex].
Hence, the time it would take Colleen to clear the yard alone is:
[tex]\[ \boxed{40} \][/tex]
So the correct answer is:
D. 40 minutes
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.