At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To simplify the expression [tex]\(\frac{\log \sqrt[3]{8}}{\log 4}\)[/tex], let's break it down step by step.
1. Numerator Analysis:
- We start by analyzing [tex]\(\log \sqrt[3]{8}\)[/tex]. First, note that [tex]\(\sqrt[3]{8}\)[/tex] represents the cube root of 8.
- Since [tex]\(8 = 2^3\)[/tex], the cube root of 8 can be expressed as:
[tex]\[ \sqrt[3]{8} = (2^3)^{1/3} = 2 \][/tex]
- Thus, [tex]\(\log \sqrt[3]{8} = \log 2\)[/tex].
2. Denominator Analysis:
- Now, let's consider [tex]\(\log 4\)[/tex]. Similarly, we note that [tex]\(4 = 2^2\)[/tex].
- Using the logarithm property that [tex]\(\log a^b = b \log a\)[/tex], we have:
[tex]\[ \log 4 = \log (2^2) = 2 \log 2 \][/tex]
3. Putting It All Together:
- We now substitute these simplified forms back into our original expression:
[tex]\[ \frac{\log \sqrt[3]{8}}{\log 4} = \frac{\log 2}{2 \log 2} \][/tex]
- The [tex]\(\log 2\)[/tex] terms in the numerator and the denominator cancel out, leaving:
[tex]\[ \frac{\log 2}{2 \log 2} = \frac{1}{2} \][/tex]
Therefore, the simplified form of [tex]\(\frac{\log \sqrt[3]{8}}{\log 4}\)[/tex] is:
[tex]\[ \frac{1}{2} \][/tex]
The numerical values involved in following through these steps are:
- The numerator [tex]\(\log 2\)[/tex] is approximately [tex]\(0.6931\)[/tex].
- The denominator [tex]\(2 \log 2\)[/tex] is approximately [tex]\(1.3863\)[/tex].
Thus, our final simplified value accurately turns out to be [tex]\(0.5\)[/tex].
1. Numerator Analysis:
- We start by analyzing [tex]\(\log \sqrt[3]{8}\)[/tex]. First, note that [tex]\(\sqrt[3]{8}\)[/tex] represents the cube root of 8.
- Since [tex]\(8 = 2^3\)[/tex], the cube root of 8 can be expressed as:
[tex]\[ \sqrt[3]{8} = (2^3)^{1/3} = 2 \][/tex]
- Thus, [tex]\(\log \sqrt[3]{8} = \log 2\)[/tex].
2. Denominator Analysis:
- Now, let's consider [tex]\(\log 4\)[/tex]. Similarly, we note that [tex]\(4 = 2^2\)[/tex].
- Using the logarithm property that [tex]\(\log a^b = b \log a\)[/tex], we have:
[tex]\[ \log 4 = \log (2^2) = 2 \log 2 \][/tex]
3. Putting It All Together:
- We now substitute these simplified forms back into our original expression:
[tex]\[ \frac{\log \sqrt[3]{8}}{\log 4} = \frac{\log 2}{2 \log 2} \][/tex]
- The [tex]\(\log 2\)[/tex] terms in the numerator and the denominator cancel out, leaving:
[tex]\[ \frac{\log 2}{2 \log 2} = \frac{1}{2} \][/tex]
Therefore, the simplified form of [tex]\(\frac{\log \sqrt[3]{8}}{\log 4}\)[/tex] is:
[tex]\[ \frac{1}{2} \][/tex]
The numerical values involved in following through these steps are:
- The numerator [tex]\(\log 2\)[/tex] is approximately [tex]\(0.6931\)[/tex].
- The denominator [tex]\(2 \log 2\)[/tex] is approximately [tex]\(1.3863\)[/tex].
Thus, our final simplified value accurately turns out to be [tex]\(0.5\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.