Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Alright, let's identify which of the given expressions are polynomials by carefully examining each term in the expressions. A polynomial is an expression involving only non-negative integer exponents of the variable.
### Expression (a)
[tex]\[3 + 2x - 5x^2 - 4x^3\][/tex]
- The constant term [tex]\(3\)[/tex] is a polynomial term.
- The term [tex]\(2x\)[/tex] has an exponent of 1, which is a non-negative integer.
- The term [tex]\(-5x^2\)[/tex] has an exponent of 2, which is a non-negative integer.
- The term [tex]\(-4x^3\)[/tex] has an exponent of 3, which is a non-negative integer.
All terms in the expression have non-negative integer exponents. Therefore, expression (a) is a polynomial.
### Expression (b)
[tex]\[\sqrt{4} x^3 + 7x^2 - 8x + 9\][/tex]
- The term [tex]\(\sqrt{4} x^3\)[/tex] simplifies since [tex]\(\sqrt{4} = 2\)[/tex], yielding [tex]\(2x^3\)[/tex], which has an exponent of 3. This is a polynomial term.
- The term [tex]\(7x^2\)[/tex] has an exponent of 2, which is a non-negative integer.
- The term [tex]\(-8x\)[/tex] has an exponent of 1, which is a non-negative integer.
- The constant term [tex]\(9\)[/tex] is a polynomial term.
All terms in the expression have non-negative integer exponents. Therefore, expression (b) is a polynomial.
### Expression (c)
[tex]\[3x^4 + 9x^3 - 7\sqrt{x} + 8\][/tex]
- The term [tex]\(3x^4\)[/tex] has an exponent of 4, which is a non-negative integer.
- The term [tex]\(9x^3\)[/tex] has an exponent of 3, which is a non-negative integer.
- The term [tex]\(-7\sqrt{x}\)[/tex] or [tex]\(-7x^{1/2}\)[/tex] has an exponent of [tex]\(\frac{1}{2}\)[/tex], which is not an integer.
Because the exponent [tex]\(\frac{1}{2}\)[/tex] in the term [tex]\(-7\sqrt{x}\)[/tex] is not a non-negative integer, expression (c) is not a polynomial.
### Expression (d)
[tex]\[4x^3 - 10x^{-1} + 1\][/tex]
- The term [tex]\(4x^3\)[/tex] has an exponent of 3, which is a non-negative integer.
- The term [tex]\(-10x^{-1}\)[/tex] has an exponent of [tex]\(-1\)[/tex], which is negative.
Because the exponent [tex]\(-1\)[/tex] in the term [tex]\(-10x^{-1}\)[/tex] is negative, expression (d) is not a polynomial.
### Summary
- Expression (a) is a polynomial.
- Expression (b) is a polynomial.
- Expression (c) is not a polynomial because it contains the term [tex]\(\sqrt{x}\)[/tex], with a non-integer exponent of [tex]\(\frac{1}{2}\)[/tex].
- Expression (d) is not a polynomial because it contains the term [tex]\(x^{-1}\)[/tex], with a negative exponent.
### Expression (a)
[tex]\[3 + 2x - 5x^2 - 4x^3\][/tex]
- The constant term [tex]\(3\)[/tex] is a polynomial term.
- The term [tex]\(2x\)[/tex] has an exponent of 1, which is a non-negative integer.
- The term [tex]\(-5x^2\)[/tex] has an exponent of 2, which is a non-negative integer.
- The term [tex]\(-4x^3\)[/tex] has an exponent of 3, which is a non-negative integer.
All terms in the expression have non-negative integer exponents. Therefore, expression (a) is a polynomial.
### Expression (b)
[tex]\[\sqrt{4} x^3 + 7x^2 - 8x + 9\][/tex]
- The term [tex]\(\sqrt{4} x^3\)[/tex] simplifies since [tex]\(\sqrt{4} = 2\)[/tex], yielding [tex]\(2x^3\)[/tex], which has an exponent of 3. This is a polynomial term.
- The term [tex]\(7x^2\)[/tex] has an exponent of 2, which is a non-negative integer.
- The term [tex]\(-8x\)[/tex] has an exponent of 1, which is a non-negative integer.
- The constant term [tex]\(9\)[/tex] is a polynomial term.
All terms in the expression have non-negative integer exponents. Therefore, expression (b) is a polynomial.
### Expression (c)
[tex]\[3x^4 + 9x^3 - 7\sqrt{x} + 8\][/tex]
- The term [tex]\(3x^4\)[/tex] has an exponent of 4, which is a non-negative integer.
- The term [tex]\(9x^3\)[/tex] has an exponent of 3, which is a non-negative integer.
- The term [tex]\(-7\sqrt{x}\)[/tex] or [tex]\(-7x^{1/2}\)[/tex] has an exponent of [tex]\(\frac{1}{2}\)[/tex], which is not an integer.
Because the exponent [tex]\(\frac{1}{2}\)[/tex] in the term [tex]\(-7\sqrt{x}\)[/tex] is not a non-negative integer, expression (c) is not a polynomial.
### Expression (d)
[tex]\[4x^3 - 10x^{-1} + 1\][/tex]
- The term [tex]\(4x^3\)[/tex] has an exponent of 3, which is a non-negative integer.
- The term [tex]\(-10x^{-1}\)[/tex] has an exponent of [tex]\(-1\)[/tex], which is negative.
Because the exponent [tex]\(-1\)[/tex] in the term [tex]\(-10x^{-1}\)[/tex] is negative, expression (d) is not a polynomial.
### Summary
- Expression (a) is a polynomial.
- Expression (b) is a polynomial.
- Expression (c) is not a polynomial because it contains the term [tex]\(\sqrt{x}\)[/tex], with a non-integer exponent of [tex]\(\frac{1}{2}\)[/tex].
- Expression (d) is not a polynomial because it contains the term [tex]\(x^{-1}\)[/tex], with a negative exponent.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.