Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the end behavior of the function [tex]\( f(x) = x^3 + 2x^2 - 5x - 6 \)[/tex], we analyze its leading term, which is [tex]\( x^3 \)[/tex] in this case. The behavior of the function as [tex]\( x \)[/tex] approaches positive or negative infinity is dictated by this leading term.
For the cubic polynomial [tex]\( f(x) = x^3 + 2x^2 - 5x - 6 \)[/tex]:
1. As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]):
- The leading term [tex]\( x^3 \)[/tex] dominates the behavior.
- When [tex]\( x \)[/tex] is a large negative number, [tex]\( x^3 \)[/tex] becomes a large negative number.
- Therefore, as [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
2. As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]):
- The leading term [tex]\( x^3 \)[/tex] again dominates the behavior.
- When [tex]\( x \)[/tex] is a large positive number, [tex]\( x^3 \)[/tex] becomes a large positive number.
- Therefore, as [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
Based on this analysis, the correct end behaviors described are:
- As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity.
- As [tex]\( x \)[/tex] approaches infinity, [tex]\( f(x) \)[/tex] approaches infinity.
The correct answer is:
D. As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity. As [tex]\( x \)[/tex] approaches infinity, \( f(x) approaches infinity.
For the cubic polynomial [tex]\( f(x) = x^3 + 2x^2 - 5x - 6 \)[/tex]:
1. As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]):
- The leading term [tex]\( x^3 \)[/tex] dominates the behavior.
- When [tex]\( x \)[/tex] is a large negative number, [tex]\( x^3 \)[/tex] becomes a large negative number.
- Therefore, as [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
2. As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]):
- The leading term [tex]\( x^3 \)[/tex] again dominates the behavior.
- When [tex]\( x \)[/tex] is a large positive number, [tex]\( x^3 \)[/tex] becomes a large positive number.
- Therefore, as [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
Based on this analysis, the correct end behaviors described are:
- As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity.
- As [tex]\( x \)[/tex] approaches infinity, [tex]\( f(x) \)[/tex] approaches infinity.
The correct answer is:
D. As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( f(x) \)[/tex] approaches negative infinity. As [tex]\( x \)[/tex] approaches infinity, \( f(x) approaches infinity.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.