Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Pour résoudre le système d'équations suivant dans [tex]\(\mathbb{R}\)[/tex], nous allons procéder étape par étape :
[tex]\[ \left\{ \begin{array}{c} x + y - z = 1 \\ 2x + 3y + \beta z = 3 \\ x + \beta y + 3z = -3 \end{array} \right. \][/tex]
### Étape 1 : Représentation matricielle
On peut représenter le système sous forme d'une matrice augmentée [tex]\(A|B\)[/tex].
[tex]\[ A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix} \][/tex]
### Étape 2 : Déterminant de la matrice des coefficients
Pour déterminer si le système a une solution unique, nous devons nous assurer que le déterminant de la matrice des coefficients [tex]\(A\)[/tex] n'est pas nul. Calculons ce déterminant :
[tex]\[ \det(A) = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{vmatrix} \][/tex]
En développant par les cofacteurs de la première ligne :
[tex]\[ \det(A) = 1 \cdot \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} \][/tex]
Calculons chaque sous-déterminant :
[tex]\[ \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} = 3 \cdot 3 - \beta \cdot \beta = 9 - \beta^2 \][/tex]
[tex]\[ \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - \beta \cdot 1 = 6 - \beta \][/tex]
[tex]\[ \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} = 2 \cdot \beta - 3 \cdot 1 = 2\beta - 3 \][/tex]
Donc,
[tex]\[ \det(A) = 1 \cdot (9 - \beta^2) - 1 \cdot (6 - \beta) - 1 \cdot (2\beta - 3) \][/tex]
Regroupons les termes :
[tex]\[ \det(A) = 9 - \beta^2 - 6 + \beta - 2\beta + 3 \][/tex]
[tex]\[ \det(A) = -\beta^2 - \beta + 6 \][/tex]
Pour que le système ait une solution unique, il faut que [tex]\(\det(A) \neq 0\)[/tex]. Cherchons les valeurs de [tex]\(\beta\)[/tex] pour lesquelles ce déterminant est nul :
[tex]\(-\beta^2 - \beta + 6 = 0\)[/tex]
### Étape 3 : Résolution de l'équation du déterminant
Résolvons l'équation quadratique [tex]\(-\beta^2 - \beta + 6 = 0\)[/tex] :
Revenons sur cette équation en changeant le signe :
[tex]\(\beta^2 + \beta - 6 = 0\)[/tex]
Les racines de cette équation quadratique se déterminent comme suit :
[tex]\[ \Delta = 1^2 - 4 \cdot 1 \cdot (-6) = 1 + 24 = 25 \][/tex]
[tex]\[ \beta_{1,2} = \frac{-1 \pm \sqrt{25}}{2} = \frac{-1 \pm 5}{2} \][/tex]
[tex]\[ \beta_1 = \frac{4}{2} = 2, \quad \beta_2 = \frac{-6}{2} = -3 \][/tex]
Donc les valeurs de [tex]\(\beta\)[/tex] pour lesquelles le déterminant est nul sont [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Étape 4 : Conclusion
Le système admet une solution unique pour toutes les valeurs de [tex]\(\beta\)[/tex] sauf [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Solution pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex]
Pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex], la solution du système est donnée par :
[tex]\[ x = \frac{\beta + 3}{\beta - 2}, \quad y = \frac{-4}{\beta - 2}, \quad z = \frac{1}{\beta - 2} \][/tex]
[tex]\[ \left\{ \begin{array}{c} x + y - z = 1 \\ 2x + 3y + \beta z = 3 \\ x + \beta y + 3z = -3 \end{array} \right. \][/tex]
### Étape 1 : Représentation matricielle
On peut représenter le système sous forme d'une matrice augmentée [tex]\(A|B\)[/tex].
[tex]\[ A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix} \][/tex]
### Étape 2 : Déterminant de la matrice des coefficients
Pour déterminer si le système a une solution unique, nous devons nous assurer que le déterminant de la matrice des coefficients [tex]\(A\)[/tex] n'est pas nul. Calculons ce déterminant :
[tex]\[ \det(A) = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{vmatrix} \][/tex]
En développant par les cofacteurs de la première ligne :
[tex]\[ \det(A) = 1 \cdot \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} \][/tex]
Calculons chaque sous-déterminant :
[tex]\[ \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} = 3 \cdot 3 - \beta \cdot \beta = 9 - \beta^2 \][/tex]
[tex]\[ \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - \beta \cdot 1 = 6 - \beta \][/tex]
[tex]\[ \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} = 2 \cdot \beta - 3 \cdot 1 = 2\beta - 3 \][/tex]
Donc,
[tex]\[ \det(A) = 1 \cdot (9 - \beta^2) - 1 \cdot (6 - \beta) - 1 \cdot (2\beta - 3) \][/tex]
Regroupons les termes :
[tex]\[ \det(A) = 9 - \beta^2 - 6 + \beta - 2\beta + 3 \][/tex]
[tex]\[ \det(A) = -\beta^2 - \beta + 6 \][/tex]
Pour que le système ait une solution unique, il faut que [tex]\(\det(A) \neq 0\)[/tex]. Cherchons les valeurs de [tex]\(\beta\)[/tex] pour lesquelles ce déterminant est nul :
[tex]\(-\beta^2 - \beta + 6 = 0\)[/tex]
### Étape 3 : Résolution de l'équation du déterminant
Résolvons l'équation quadratique [tex]\(-\beta^2 - \beta + 6 = 0\)[/tex] :
Revenons sur cette équation en changeant le signe :
[tex]\(\beta^2 + \beta - 6 = 0\)[/tex]
Les racines de cette équation quadratique se déterminent comme suit :
[tex]\[ \Delta = 1^2 - 4 \cdot 1 \cdot (-6) = 1 + 24 = 25 \][/tex]
[tex]\[ \beta_{1,2} = \frac{-1 \pm \sqrt{25}}{2} = \frac{-1 \pm 5}{2} \][/tex]
[tex]\[ \beta_1 = \frac{4}{2} = 2, \quad \beta_2 = \frac{-6}{2} = -3 \][/tex]
Donc les valeurs de [tex]\(\beta\)[/tex] pour lesquelles le déterminant est nul sont [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Étape 4 : Conclusion
Le système admet une solution unique pour toutes les valeurs de [tex]\(\beta\)[/tex] sauf [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Solution pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex]
Pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex], la solution du système est donnée par :
[tex]\[ x = \frac{\beta + 3}{\beta - 2}, \quad y = \frac{-4}{\beta - 2}, \quad z = \frac{1}{\beta - 2} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.