Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Pour résoudre le système d'équations suivant dans [tex]\(\mathbb{R}\)[/tex], nous allons procéder étape par étape :
[tex]\[ \left\{ \begin{array}{c} x + y - z = 1 \\ 2x + 3y + \beta z = 3 \\ x + \beta y + 3z = -3 \end{array} \right. \][/tex]
### Étape 1 : Représentation matricielle
On peut représenter le système sous forme d'une matrice augmentée [tex]\(A|B\)[/tex].
[tex]\[ A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix} \][/tex]
### Étape 2 : Déterminant de la matrice des coefficients
Pour déterminer si le système a une solution unique, nous devons nous assurer que le déterminant de la matrice des coefficients [tex]\(A\)[/tex] n'est pas nul. Calculons ce déterminant :
[tex]\[ \det(A) = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{vmatrix} \][/tex]
En développant par les cofacteurs de la première ligne :
[tex]\[ \det(A) = 1 \cdot \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} \][/tex]
Calculons chaque sous-déterminant :
[tex]\[ \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} = 3 \cdot 3 - \beta \cdot \beta = 9 - \beta^2 \][/tex]
[tex]\[ \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - \beta \cdot 1 = 6 - \beta \][/tex]
[tex]\[ \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} = 2 \cdot \beta - 3 \cdot 1 = 2\beta - 3 \][/tex]
Donc,
[tex]\[ \det(A) = 1 \cdot (9 - \beta^2) - 1 \cdot (6 - \beta) - 1 \cdot (2\beta - 3) \][/tex]
Regroupons les termes :
[tex]\[ \det(A) = 9 - \beta^2 - 6 + \beta - 2\beta + 3 \][/tex]
[tex]\[ \det(A) = -\beta^2 - \beta + 6 \][/tex]
Pour que le système ait une solution unique, il faut que [tex]\(\det(A) \neq 0\)[/tex]. Cherchons les valeurs de [tex]\(\beta\)[/tex] pour lesquelles ce déterminant est nul :
[tex]\(-\beta^2 - \beta + 6 = 0\)[/tex]
### Étape 3 : Résolution de l'équation du déterminant
Résolvons l'équation quadratique [tex]\(-\beta^2 - \beta + 6 = 0\)[/tex] :
Revenons sur cette équation en changeant le signe :
[tex]\(\beta^2 + \beta - 6 = 0\)[/tex]
Les racines de cette équation quadratique se déterminent comme suit :
[tex]\[ \Delta = 1^2 - 4 \cdot 1 \cdot (-6) = 1 + 24 = 25 \][/tex]
[tex]\[ \beta_{1,2} = \frac{-1 \pm \sqrt{25}}{2} = \frac{-1 \pm 5}{2} \][/tex]
[tex]\[ \beta_1 = \frac{4}{2} = 2, \quad \beta_2 = \frac{-6}{2} = -3 \][/tex]
Donc les valeurs de [tex]\(\beta\)[/tex] pour lesquelles le déterminant est nul sont [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Étape 4 : Conclusion
Le système admet une solution unique pour toutes les valeurs de [tex]\(\beta\)[/tex] sauf [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Solution pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex]
Pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex], la solution du système est donnée par :
[tex]\[ x = \frac{\beta + 3}{\beta - 2}, \quad y = \frac{-4}{\beta - 2}, \quad z = \frac{1}{\beta - 2} \][/tex]
[tex]\[ \left\{ \begin{array}{c} x + y - z = 1 \\ 2x + 3y + \beta z = 3 \\ x + \beta y + 3z = -3 \end{array} \right. \][/tex]
### Étape 1 : Représentation matricielle
On peut représenter le système sous forme d'une matrice augmentée [tex]\(A|B\)[/tex].
[tex]\[ A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix} \][/tex]
### Étape 2 : Déterminant de la matrice des coefficients
Pour déterminer si le système a une solution unique, nous devons nous assurer que le déterminant de la matrice des coefficients [tex]\(A\)[/tex] n'est pas nul. Calculons ce déterminant :
[tex]\[ \det(A) = \begin{vmatrix} 1 & 1 & -1 \\ 2 & 3 & \beta \\ 1 & \beta & 3 \end{vmatrix} \][/tex]
En développant par les cofacteurs de la première ligne :
[tex]\[ \det(A) = 1 \cdot \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} \][/tex]
Calculons chaque sous-déterminant :
[tex]\[ \begin{vmatrix} 3 & \beta \\ \beta & 3 \end{vmatrix} = 3 \cdot 3 - \beta \cdot \beta = 9 - \beta^2 \][/tex]
[tex]\[ \begin{vmatrix} 2 & \beta \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - \beta \cdot 1 = 6 - \beta \][/tex]
[tex]\[ \begin{vmatrix} 2 & 3 \\ 1 & \beta \end{vmatrix} = 2 \cdot \beta - 3 \cdot 1 = 2\beta - 3 \][/tex]
Donc,
[tex]\[ \det(A) = 1 \cdot (9 - \beta^2) - 1 \cdot (6 - \beta) - 1 \cdot (2\beta - 3) \][/tex]
Regroupons les termes :
[tex]\[ \det(A) = 9 - \beta^2 - 6 + \beta - 2\beta + 3 \][/tex]
[tex]\[ \det(A) = -\beta^2 - \beta + 6 \][/tex]
Pour que le système ait une solution unique, il faut que [tex]\(\det(A) \neq 0\)[/tex]. Cherchons les valeurs de [tex]\(\beta\)[/tex] pour lesquelles ce déterminant est nul :
[tex]\(-\beta^2 - \beta + 6 = 0\)[/tex]
### Étape 3 : Résolution de l'équation du déterminant
Résolvons l'équation quadratique [tex]\(-\beta^2 - \beta + 6 = 0\)[/tex] :
Revenons sur cette équation en changeant le signe :
[tex]\(\beta^2 + \beta - 6 = 0\)[/tex]
Les racines de cette équation quadratique se déterminent comme suit :
[tex]\[ \Delta = 1^2 - 4 \cdot 1 \cdot (-6) = 1 + 24 = 25 \][/tex]
[tex]\[ \beta_{1,2} = \frac{-1 \pm \sqrt{25}}{2} = \frac{-1 \pm 5}{2} \][/tex]
[tex]\[ \beta_1 = \frac{4}{2} = 2, \quad \beta_2 = \frac{-6}{2} = -3 \][/tex]
Donc les valeurs de [tex]\(\beta\)[/tex] pour lesquelles le déterminant est nul sont [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Étape 4 : Conclusion
Le système admet une solution unique pour toutes les valeurs de [tex]\(\beta\)[/tex] sauf [tex]\(\beta = 2\)[/tex] et [tex]\(\beta = -3\)[/tex].
### Solution pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex]
Pour [tex]\(\beta \neq 2\)[/tex] et [tex]\(\beta \neq -3\)[/tex], la solution du système est donnée par :
[tex]\[ x = \frac{\beta + 3}{\beta - 2}, \quad y = \frac{-4}{\beta - 2}, \quad z = \frac{1}{\beta - 2} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.