Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Solve for [tex]\( x \)[/tex]:
[tex]\[ 2(1.5)^x + 1 = -3 \][/tex]


Sagot :

Let's solve the equation step-by-step:

1. Start with the given equation:

[tex]\[ 2(1.5)^x + 1 = -3 \][/tex]

2. First, we need to isolate the exponential term. Subtract 1 from both sides of the equation:

[tex]\[ 2(1.5)^x + 1 - 1 = -3 - 1 \][/tex]

Simplifying this, we get:

[tex]\[ 2(1.5)^x = -4 \][/tex]

3. Next, we need to isolate the base with the exponent. Divide both sides of the equation by 2:

[tex]\[ \frac{2(1.5)^x}{2} = \frac{-4}{2} \][/tex]

This simplifies to:

[tex]\[ (1.5)^x = -2 \][/tex]

4. Now we need to recall a key property of exponential functions. The expression [tex]\((1.5)^x\)[/tex] is an exponential function with a positive base (1.5). For any real number [tex]\(x\)[/tex], an exponential function with a positive base always yields a positive result. It can never be negative.

5. Since [tex]\((1.5)^x\)[/tex] is always positive for any [tex]\(x \in \mathbb{R}\)[/tex], it is impossible for it to equal -2, which is a negative number.

6. Therefore, there can be no real number [tex]\(x\)[/tex] that satisfies the equation:

[tex]\[ (1.5)^x = -2 \][/tex]

In conclusion, there are no real solutions for the equation:

[tex]\[ 2(1.5)^x + 1 = -3 \][/tex]