Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the solution set of the compound inequality [tex]\(1.5x - 1 > 6.5\)[/tex] or [tex]\(7x + 3 < -25\)[/tex], we need to solve each inequality individually and then combine the solutions.
### Step 1: Solve the first inequality [tex]\(1.5x - 1 > 6.5\)[/tex]
1. Isolate the term with the variable:
Add 1 to both sides of the inequality:
[tex]\[ 1.5x - 1 + 1 > 6.5 + 1 \][/tex]
Simplifies to:
[tex]\[ 1.5x > 7.5 \][/tex]
2. Solve for [tex]\(x\)[/tex]:
Divide both sides by 1.5:
[tex]\[ x > \frac{7.5}{1.5} \][/tex]
Simplifies to:
[tex]\[ x > 5 \][/tex]
### Step 2: Solve the second inequality [tex]\(7x + 3 < -25\)[/tex]
1. Isolate the term with the variable:
Subtract 3 from both sides of the inequality:
[tex]\[ 7x + 3 - 3 < -25 - 3 \][/tex]
Simplifies to:
[tex]\[ 7x < -28 \][/tex]
2. Solve for [tex]\(x\)[/tex]:
Divide both sides by 7:
[tex]\[ x < \frac{-28}{7} \][/tex]
Simplifies to:
[tex]\[ x < -4 \][/tex]
### Step 3: Combine the Solutions
The compound inequality [tex]\(1.5x - 1 > 6.5\)[/tex] or [tex]\(7x + 3 < -25\)[/tex] is satisfied if either of the individual inequalities is true.
- The solution to [tex]\(1.5x - 1 > 6.5\)[/tex] is:
[tex]\[ x > 5 \][/tex]
- The solution to [tex]\(7x + 3 < -25\)[/tex] is:
[tex]\[ x < -4 \][/tex]
### Graphing the Solution Set
- [tex]\(x > 5\)[/tex]: This represents all values of [tex]\(x\)[/tex] greater than 5.
- [tex]\(x < -4\)[/tex]: This represents all values of [tex]\(x\)[/tex] less than -4.
### Conclusion
The graph of the solution set will have two disjoint parts:
1. A part where [tex]\(x > 5\)[/tex].
2. Another part where [tex]\(x < -4\)[/tex].
In interval notation, the solution set is:
[tex]\[ (-\infty, -4) \cup (5, \infty) \][/tex]
So, the correct graph will show two separate regions on the number line: one to the left of [tex]\(-4\)[/tex] (but not including [tex]\(-4\)[/tex]), and one to the right of 5 (but not including 5).
### Step 1: Solve the first inequality [tex]\(1.5x - 1 > 6.5\)[/tex]
1. Isolate the term with the variable:
Add 1 to both sides of the inequality:
[tex]\[ 1.5x - 1 + 1 > 6.5 + 1 \][/tex]
Simplifies to:
[tex]\[ 1.5x > 7.5 \][/tex]
2. Solve for [tex]\(x\)[/tex]:
Divide both sides by 1.5:
[tex]\[ x > \frac{7.5}{1.5} \][/tex]
Simplifies to:
[tex]\[ x > 5 \][/tex]
### Step 2: Solve the second inequality [tex]\(7x + 3 < -25\)[/tex]
1. Isolate the term with the variable:
Subtract 3 from both sides of the inequality:
[tex]\[ 7x + 3 - 3 < -25 - 3 \][/tex]
Simplifies to:
[tex]\[ 7x < -28 \][/tex]
2. Solve for [tex]\(x\)[/tex]:
Divide both sides by 7:
[tex]\[ x < \frac{-28}{7} \][/tex]
Simplifies to:
[tex]\[ x < -4 \][/tex]
### Step 3: Combine the Solutions
The compound inequality [tex]\(1.5x - 1 > 6.5\)[/tex] or [tex]\(7x + 3 < -25\)[/tex] is satisfied if either of the individual inequalities is true.
- The solution to [tex]\(1.5x - 1 > 6.5\)[/tex] is:
[tex]\[ x > 5 \][/tex]
- The solution to [tex]\(7x + 3 < -25\)[/tex] is:
[tex]\[ x < -4 \][/tex]
### Graphing the Solution Set
- [tex]\(x > 5\)[/tex]: This represents all values of [tex]\(x\)[/tex] greater than 5.
- [tex]\(x < -4\)[/tex]: This represents all values of [tex]\(x\)[/tex] less than -4.
### Conclusion
The graph of the solution set will have two disjoint parts:
1. A part where [tex]\(x > 5\)[/tex].
2. Another part where [tex]\(x < -4\)[/tex].
In interval notation, the solution set is:
[tex]\[ (-\infty, -4) \cup (5, \infty) \][/tex]
So, the correct graph will show two separate regions on the number line: one to the left of [tex]\(-4\)[/tex] (but not including [tex]\(-4\)[/tex]), and one to the right of 5 (but not including 5).
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.