At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the solution set of the compound inequality [tex]\(1.5x - 1 > 6.5\)[/tex] or [tex]\(7x + 3 < -25\)[/tex], we need to solve each inequality individually and then combine the solutions.
### Step 1: Solve the first inequality [tex]\(1.5x - 1 > 6.5\)[/tex]
1. Isolate the term with the variable:
Add 1 to both sides of the inequality:
[tex]\[ 1.5x - 1 + 1 > 6.5 + 1 \][/tex]
Simplifies to:
[tex]\[ 1.5x > 7.5 \][/tex]
2. Solve for [tex]\(x\)[/tex]:
Divide both sides by 1.5:
[tex]\[ x > \frac{7.5}{1.5} \][/tex]
Simplifies to:
[tex]\[ x > 5 \][/tex]
### Step 2: Solve the second inequality [tex]\(7x + 3 < -25\)[/tex]
1. Isolate the term with the variable:
Subtract 3 from both sides of the inequality:
[tex]\[ 7x + 3 - 3 < -25 - 3 \][/tex]
Simplifies to:
[tex]\[ 7x < -28 \][/tex]
2. Solve for [tex]\(x\)[/tex]:
Divide both sides by 7:
[tex]\[ x < \frac{-28}{7} \][/tex]
Simplifies to:
[tex]\[ x < -4 \][/tex]
### Step 3: Combine the Solutions
The compound inequality [tex]\(1.5x - 1 > 6.5\)[/tex] or [tex]\(7x + 3 < -25\)[/tex] is satisfied if either of the individual inequalities is true.
- The solution to [tex]\(1.5x - 1 > 6.5\)[/tex] is:
[tex]\[ x > 5 \][/tex]
- The solution to [tex]\(7x + 3 < -25\)[/tex] is:
[tex]\[ x < -4 \][/tex]
### Graphing the Solution Set
- [tex]\(x > 5\)[/tex]: This represents all values of [tex]\(x\)[/tex] greater than 5.
- [tex]\(x < -4\)[/tex]: This represents all values of [tex]\(x\)[/tex] less than -4.
### Conclusion
The graph of the solution set will have two disjoint parts:
1. A part where [tex]\(x > 5\)[/tex].
2. Another part where [tex]\(x < -4\)[/tex].
In interval notation, the solution set is:
[tex]\[ (-\infty, -4) \cup (5, \infty) \][/tex]
So, the correct graph will show two separate regions on the number line: one to the left of [tex]\(-4\)[/tex] (but not including [tex]\(-4\)[/tex]), and one to the right of 5 (but not including 5).
### Step 1: Solve the first inequality [tex]\(1.5x - 1 > 6.5\)[/tex]
1. Isolate the term with the variable:
Add 1 to both sides of the inequality:
[tex]\[ 1.5x - 1 + 1 > 6.5 + 1 \][/tex]
Simplifies to:
[tex]\[ 1.5x > 7.5 \][/tex]
2. Solve for [tex]\(x\)[/tex]:
Divide both sides by 1.5:
[tex]\[ x > \frac{7.5}{1.5} \][/tex]
Simplifies to:
[tex]\[ x > 5 \][/tex]
### Step 2: Solve the second inequality [tex]\(7x + 3 < -25\)[/tex]
1. Isolate the term with the variable:
Subtract 3 from both sides of the inequality:
[tex]\[ 7x + 3 - 3 < -25 - 3 \][/tex]
Simplifies to:
[tex]\[ 7x < -28 \][/tex]
2. Solve for [tex]\(x\)[/tex]:
Divide both sides by 7:
[tex]\[ x < \frac{-28}{7} \][/tex]
Simplifies to:
[tex]\[ x < -4 \][/tex]
### Step 3: Combine the Solutions
The compound inequality [tex]\(1.5x - 1 > 6.5\)[/tex] or [tex]\(7x + 3 < -25\)[/tex] is satisfied if either of the individual inequalities is true.
- The solution to [tex]\(1.5x - 1 > 6.5\)[/tex] is:
[tex]\[ x > 5 \][/tex]
- The solution to [tex]\(7x + 3 < -25\)[/tex] is:
[tex]\[ x < -4 \][/tex]
### Graphing the Solution Set
- [tex]\(x > 5\)[/tex]: This represents all values of [tex]\(x\)[/tex] greater than 5.
- [tex]\(x < -4\)[/tex]: This represents all values of [tex]\(x\)[/tex] less than -4.
### Conclusion
The graph of the solution set will have two disjoint parts:
1. A part where [tex]\(x > 5\)[/tex].
2. Another part where [tex]\(x < -4\)[/tex].
In interval notation, the solution set is:
[tex]\[ (-\infty, -4) \cup (5, \infty) \][/tex]
So, the correct graph will show two separate regions on the number line: one to the left of [tex]\(-4\)[/tex] (but not including [tex]\(-4\)[/tex]), and one to the right of 5 (but not including 5).
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.