Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which graph shows all the values that satisfy the inequality [tex]\(\frac{2}{9} x + 3 > 4 \frac{5}{9}\)[/tex], we need to solve it step-by-step.
1. Simplify the inequality:
Start with the given inequality:
[tex]\[ \frac{2}{9} x + 3 > 4 \frac{5}{9} \][/tex]
Convert the mixed number [tex]\(4 \frac{5}{9}\)[/tex] to an improper fraction.
[tex]\[ 4 \frac{5}{9} = \frac{4 \cdot 9 + 5}{9} = \frac{36 + 5}{9} = \frac{41}{9} \][/tex]
Substitute this back into the inequality:
[tex]\[ \frac{2}{9} x + 3 > \frac{41}{9} \][/tex]
2. Isolate the variable [tex]\(x\)[/tex]:
Subtract 3 from both sides to begin isolating [tex]\(x\)[/tex]:
[tex]\[ \frac{2}{9} x + 3 - 3 > \frac{41}{9} - 3 \][/tex]
To subtract 3 from [tex]\(\frac{41}{9}\)[/tex], convert 3 to a fraction with the same denominator (9):
[tex]\[ 3 = \frac{27}{9} \][/tex]
So the inequality becomes:
[tex]\[ \frac{2}{9} x > \frac{41}{9} - \frac{27}{9} \][/tex]
Simplify the right side:
[tex]\[ \frac{2}{9} x > \frac{41 - 27}{9} = \frac{14}{9} \][/tex]
3. Solve for [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], multiply both sides of the inequality by the reciprocal of [tex]\(\frac{2}{9}\)[/tex], which is [tex]\(\frac{9}{2}\)[/tex]:
[tex]\[ x > \frac{14}{9} \cdot \frac{9}{2} \][/tex]
Simplify the right side:
[tex]\[ x > \frac{14 \cdot 9}{9 \cdot 2} = \frac{14}{2} = 7 \][/tex]
Therefore, the solution to the inequality is:
[tex]\[ x > 7 \][/tex]
The graph that represents all the values greater than 7 (i.e., all numbers to the right of 7 on a number line, not including 7 itself) would illustrate all [tex]\(x\)[/tex] such that [tex]\(x\)[/tex] is greater than [tex]\(7\)[/tex]. The correct graph will have an open circle at [tex]\(x = 7\)[/tex] (indicating that 7 itself is not included) and shading or an arrow indicating that all numbers greater than 7 satisfy the inequality.
1. Simplify the inequality:
Start with the given inequality:
[tex]\[ \frac{2}{9} x + 3 > 4 \frac{5}{9} \][/tex]
Convert the mixed number [tex]\(4 \frac{5}{9}\)[/tex] to an improper fraction.
[tex]\[ 4 \frac{5}{9} = \frac{4 \cdot 9 + 5}{9} = \frac{36 + 5}{9} = \frac{41}{9} \][/tex]
Substitute this back into the inequality:
[tex]\[ \frac{2}{9} x + 3 > \frac{41}{9} \][/tex]
2. Isolate the variable [tex]\(x\)[/tex]:
Subtract 3 from both sides to begin isolating [tex]\(x\)[/tex]:
[tex]\[ \frac{2}{9} x + 3 - 3 > \frac{41}{9} - 3 \][/tex]
To subtract 3 from [tex]\(\frac{41}{9}\)[/tex], convert 3 to a fraction with the same denominator (9):
[tex]\[ 3 = \frac{27}{9} \][/tex]
So the inequality becomes:
[tex]\[ \frac{2}{9} x > \frac{41}{9} - \frac{27}{9} \][/tex]
Simplify the right side:
[tex]\[ \frac{2}{9} x > \frac{41 - 27}{9} = \frac{14}{9} \][/tex]
3. Solve for [tex]\(x\)[/tex]:
To isolate [tex]\(x\)[/tex], multiply both sides of the inequality by the reciprocal of [tex]\(\frac{2}{9}\)[/tex], which is [tex]\(\frac{9}{2}\)[/tex]:
[tex]\[ x > \frac{14}{9} \cdot \frac{9}{2} \][/tex]
Simplify the right side:
[tex]\[ x > \frac{14 \cdot 9}{9 \cdot 2} = \frac{14}{2} = 7 \][/tex]
Therefore, the solution to the inequality is:
[tex]\[ x > 7 \][/tex]
The graph that represents all the values greater than 7 (i.e., all numbers to the right of 7 on a number line, not including 7 itself) would illustrate all [tex]\(x\)[/tex] such that [tex]\(x\)[/tex] is greater than [tex]\(7\)[/tex]. The correct graph will have an open circle at [tex]\(x = 7\)[/tex] (indicating that 7 itself is not included) and shading or an arrow indicating that all numbers greater than 7 satisfy the inequality.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.