Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the domain of the function [tex]\((c \cdot d)(x)\)[/tex], where [tex]\(c(x) = \frac{5}{x-2}\)[/tex] and [tex]\(d(x) = x + 3\)[/tex], we need to identify the values of [tex]\(x\)[/tex] for which this combined function is defined.
First, let's understand the individual domains of the functions [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex]:
1. Domain of [tex]\(c(x) = \frac{5}{x-2}\)[/tex]:
- The function [tex]\(c(x)\)[/tex] will be undefined when the denominator is zero.
- Therefore, solve [tex]\(x-2=0\)[/tex] to find the value that makes the denominator zero:
[tex]\[ x - 2 = 0 \implies x = 2 \][/tex]
- Hence, [tex]\(c(x)\)[/tex] is undefined at [tex]\(x = 2\)[/tex].
- The domain of [tex]\(c(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex].
2. Domain of [tex]\(d(x) = x + 3\)[/tex]:
- The function [tex]\(d(x)\)[/tex] is a linear function, and it is defined for all real numbers [tex]\(x\)[/tex].
- Therefore, the domain of [tex]\(d(x)\)[/tex] is all real numbers.
Now, to find the domain of the product function [tex]\((c \cdot d)(x)\)[/tex]:
[tex]\[ (c \cdot d)(x) = \left( \frac{5}{x-2} \right) \cdot (x + 3) \][/tex]
For the product [tex]\((c \cdot d)(x)\)[/tex] to be defined, both [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex] must be defined. The only restriction comes from [tex]\(c(x)\)[/tex], which is undefined at [tex]\(x = 2\)[/tex].
Thus, the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real values of [tex]\(x\)[/tex] except [tex]\(x = 2\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\text{all real values of } x \text{ except } x = 2} \][/tex]
First, let's understand the individual domains of the functions [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex]:
1. Domain of [tex]\(c(x) = \frac{5}{x-2}\)[/tex]:
- The function [tex]\(c(x)\)[/tex] will be undefined when the denominator is zero.
- Therefore, solve [tex]\(x-2=0\)[/tex] to find the value that makes the denominator zero:
[tex]\[ x - 2 = 0 \implies x = 2 \][/tex]
- Hence, [tex]\(c(x)\)[/tex] is undefined at [tex]\(x = 2\)[/tex].
- The domain of [tex]\(c(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex].
2. Domain of [tex]\(d(x) = x + 3\)[/tex]:
- The function [tex]\(d(x)\)[/tex] is a linear function, and it is defined for all real numbers [tex]\(x\)[/tex].
- Therefore, the domain of [tex]\(d(x)\)[/tex] is all real numbers.
Now, to find the domain of the product function [tex]\((c \cdot d)(x)\)[/tex]:
[tex]\[ (c \cdot d)(x) = \left( \frac{5}{x-2} \right) \cdot (x + 3) \][/tex]
For the product [tex]\((c \cdot d)(x)\)[/tex] to be defined, both [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex] must be defined. The only restriction comes from [tex]\(c(x)\)[/tex], which is undefined at [tex]\(x = 2\)[/tex].
Thus, the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real values of [tex]\(x\)[/tex] except [tex]\(x = 2\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\text{all real values of } x \text{ except } x = 2} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.