Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the domain of the function [tex]\((c \cdot d)(x)\)[/tex], where [tex]\(c(x) = \frac{5}{x-2}\)[/tex] and [tex]\(d(x) = x + 3\)[/tex], we need to identify the values of [tex]\(x\)[/tex] for which this combined function is defined.
First, let's understand the individual domains of the functions [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex]:
1. Domain of [tex]\(c(x) = \frac{5}{x-2}\)[/tex]:
- The function [tex]\(c(x)\)[/tex] will be undefined when the denominator is zero.
- Therefore, solve [tex]\(x-2=0\)[/tex] to find the value that makes the denominator zero:
[tex]\[ x - 2 = 0 \implies x = 2 \][/tex]
- Hence, [tex]\(c(x)\)[/tex] is undefined at [tex]\(x = 2\)[/tex].
- The domain of [tex]\(c(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex].
2. Domain of [tex]\(d(x) = x + 3\)[/tex]:
- The function [tex]\(d(x)\)[/tex] is a linear function, and it is defined for all real numbers [tex]\(x\)[/tex].
- Therefore, the domain of [tex]\(d(x)\)[/tex] is all real numbers.
Now, to find the domain of the product function [tex]\((c \cdot d)(x)\)[/tex]:
[tex]\[ (c \cdot d)(x) = \left( \frac{5}{x-2} \right) \cdot (x + 3) \][/tex]
For the product [tex]\((c \cdot d)(x)\)[/tex] to be defined, both [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex] must be defined. The only restriction comes from [tex]\(c(x)\)[/tex], which is undefined at [tex]\(x = 2\)[/tex].
Thus, the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real values of [tex]\(x\)[/tex] except [tex]\(x = 2\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\text{all real values of } x \text{ except } x = 2} \][/tex]
First, let's understand the individual domains of the functions [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex]:
1. Domain of [tex]\(c(x) = \frac{5}{x-2}\)[/tex]:
- The function [tex]\(c(x)\)[/tex] will be undefined when the denominator is zero.
- Therefore, solve [tex]\(x-2=0\)[/tex] to find the value that makes the denominator zero:
[tex]\[ x - 2 = 0 \implies x = 2 \][/tex]
- Hence, [tex]\(c(x)\)[/tex] is undefined at [tex]\(x = 2\)[/tex].
- The domain of [tex]\(c(x)\)[/tex] is all real numbers except [tex]\(x = 2\)[/tex].
2. Domain of [tex]\(d(x) = x + 3\)[/tex]:
- The function [tex]\(d(x)\)[/tex] is a linear function, and it is defined for all real numbers [tex]\(x\)[/tex].
- Therefore, the domain of [tex]\(d(x)\)[/tex] is all real numbers.
Now, to find the domain of the product function [tex]\((c \cdot d)(x)\)[/tex]:
[tex]\[ (c \cdot d)(x) = \left( \frac{5}{x-2} \right) \cdot (x + 3) \][/tex]
For the product [tex]\((c \cdot d)(x)\)[/tex] to be defined, both [tex]\(c(x)\)[/tex] and [tex]\(d(x)\)[/tex] must be defined. The only restriction comes from [tex]\(c(x)\)[/tex], which is undefined at [tex]\(x = 2\)[/tex].
Thus, the domain of [tex]\((c \cdot d)(x)\)[/tex] is all real values of [tex]\(x\)[/tex] except [tex]\(x = 2\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{\text{all real values of } x \text{ except } x = 2} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.