Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To factor the given quadratic expression [tex]\(-3x^2 - 24x - 36\)[/tex], we can follow these steps:
1. Identify the quadratic expression:
[tex]\[ -3x^2 - 24x - 36 \][/tex]
2. Factor out the greatest common factor (GCF):
The GCF of the coefficients [tex]\(-3\)[/tex], [tex]\(-24\)[/tex], and [tex]\(-36\)[/tex] is [tex]\(-3\)[/tex]. We can factor out [tex]\(-3\)[/tex] from the entire expression:
[tex]\[ -3(x^2 + 8x + 12) \][/tex]
3. Factor the quadratic trinomial:
We now need to factor the trinomial [tex]\(x^2 + 8x + 12\)[/tex]. We look for two numbers that multiply to [tex]\(12\)[/tex] and add to [tex]\(8\)[/tex]. These two numbers are [tex]\(2\)[/tex] and [tex]\(6\)[/tex].
4. Write the trinomial as a product of two binomials:
Using [tex]\(2\)[/tex] and [tex]\(6\)[/tex], the trinomial [tex]\(x^2 + 8x + 12\)[/tex] can be factored as:
[tex]\[ (x + 2)(x + 6) \][/tex]
5. Combine the factors with the GCF:
Incorporate the GCF back into the factored expression:
[tex]\[ -3(x + 2)(x + 6) \][/tex]
Therefore, the given expression [tex]\(-3x^2 - 24x - 36\)[/tex] is equivalent to:
[tex]\[ -3 (x + 2) (x + 6) \][/tex]
1. Identify the quadratic expression:
[tex]\[ -3x^2 - 24x - 36 \][/tex]
2. Factor out the greatest common factor (GCF):
The GCF of the coefficients [tex]\(-3\)[/tex], [tex]\(-24\)[/tex], and [tex]\(-36\)[/tex] is [tex]\(-3\)[/tex]. We can factor out [tex]\(-3\)[/tex] from the entire expression:
[tex]\[ -3(x^2 + 8x + 12) \][/tex]
3. Factor the quadratic trinomial:
We now need to factor the trinomial [tex]\(x^2 + 8x + 12\)[/tex]. We look for two numbers that multiply to [tex]\(12\)[/tex] and add to [tex]\(8\)[/tex]. These two numbers are [tex]\(2\)[/tex] and [tex]\(6\)[/tex].
4. Write the trinomial as a product of two binomials:
Using [tex]\(2\)[/tex] and [tex]\(6\)[/tex], the trinomial [tex]\(x^2 + 8x + 12\)[/tex] can be factored as:
[tex]\[ (x + 2)(x + 6) \][/tex]
5. Combine the factors with the GCF:
Incorporate the GCF back into the factored expression:
[tex]\[ -3(x + 2)(x + 6) \][/tex]
Therefore, the given expression [tex]\(-3x^2 - 24x - 36\)[/tex] is equivalent to:
[tex]\[ -3 (x + 2) (x + 6) \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.