Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Select the correct answer from each drop-down menu.

Consider this expression:
[tex]\[ -3x^2 - 24x - 36 \][/tex]

What expression is equivalent to the given expression?
[tex]\[ \square (x + \square) (x + \square) \][/tex]


Sagot :

To factor the given quadratic expression [tex]\(-3x^2 - 24x - 36\)[/tex], we can follow these steps:

1. Identify the quadratic expression:
[tex]\[ -3x^2 - 24x - 36 \][/tex]

2. Factor out the greatest common factor (GCF):
The GCF of the coefficients [tex]\(-3\)[/tex], [tex]\(-24\)[/tex], and [tex]\(-36\)[/tex] is [tex]\(-3\)[/tex]. We can factor out [tex]\(-3\)[/tex] from the entire expression:
[tex]\[ -3(x^2 + 8x + 12) \][/tex]

3. Factor the quadratic trinomial:
We now need to factor the trinomial [tex]\(x^2 + 8x + 12\)[/tex]. We look for two numbers that multiply to [tex]\(12\)[/tex] and add to [tex]\(8\)[/tex]. These two numbers are [tex]\(2\)[/tex] and [tex]\(6\)[/tex].

4. Write the trinomial as a product of two binomials:
Using [tex]\(2\)[/tex] and [tex]\(6\)[/tex], the trinomial [tex]\(x^2 + 8x + 12\)[/tex] can be factored as:
[tex]\[ (x + 2)(x + 6) \][/tex]

5. Combine the factors with the GCF:
Incorporate the GCF back into the factored expression:
[tex]\[ -3(x + 2)(x + 6) \][/tex]

Therefore, the given expression [tex]\(-3x^2 - 24x - 36\)[/tex] is equivalent to:
[tex]\[ -3 (x + 2) (x + 6) \][/tex]