At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine if the events [tex]\( A \)[/tex] (the person has gone surfing) and [tex]\( B \)[/tex] (the person has gone snowboarding) are independent, we need to analyze the probabilities involved.
Here is the step-by-step solution:
1. Total number of people surveyed:
- Total = 300
2. Number of people who have gone surfing:
- Number of people who have surfed = 225
3. Number of people who have gone snowboarding:
- Number of people who have snowboarded = 48
4. Number of people who have both surfed and snowboarded:
- Number of people who have both surfed and snowboarded = 36
5. Calculate [tex]\( P(A) \)[/tex]:
- [tex]\( P(A) \)[/tex] is the probability that a person has surfed.
- [tex]\( P(A) = \frac{\text{Number of people who have surfed}}{\text{Total number of people}} = \frac{225}{300} = 0.75 \)[/tex]
6. Calculate [tex]\( P(B) \)[/tex]:
- [tex]\( P(B) \)[/tex] is the probability that a person has snowboarded.
- [tex]\( P(B) = \frac{\text{Number of people who have snowboarded}}{\text{Total number of people}} = \frac{48}{300} = 0.16 \)[/tex]
7. Calculate [tex]\( P(A \mid B) \)[/tex]:
- [tex]\( P(A \mid B) \)[/tex] is the conditional probability that a person has surfed given that they have snowboarded.
- [tex]\( P(A \mid B) = \frac{\text{Number of people who have both surfed and snowboarded}}{\text{Number of people who have snowboarded}} = \frac{36}{48} = 0.75 \)[/tex]
8. Compare [tex]\( P(A \mid B) \)[/tex] and [tex]\( P(A) \)[/tex]:
- For the events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be independent, [tex]\( P(A \mid B) \)[/tex] must equal [tex]\( P(A) \)[/tex].
- From the calculations: [tex]\( P(A \mid B) = 0.75 \)[/tex] and [tex]\( P(A) = 0.75 \)[/tex]
Since [tex]\( P(A \mid B) \)[/tex] is indeed equal to [tex]\( P(A) \)[/tex], the events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent.
Therefore, the correct statement is:
A and B are independent events because [tex]\( P(A \mid B ) = P(A) = 0.75 \)[/tex].
Here is the step-by-step solution:
1. Total number of people surveyed:
- Total = 300
2. Number of people who have gone surfing:
- Number of people who have surfed = 225
3. Number of people who have gone snowboarding:
- Number of people who have snowboarded = 48
4. Number of people who have both surfed and snowboarded:
- Number of people who have both surfed and snowboarded = 36
5. Calculate [tex]\( P(A) \)[/tex]:
- [tex]\( P(A) \)[/tex] is the probability that a person has surfed.
- [tex]\( P(A) = \frac{\text{Number of people who have surfed}}{\text{Total number of people}} = \frac{225}{300} = 0.75 \)[/tex]
6. Calculate [tex]\( P(B) \)[/tex]:
- [tex]\( P(B) \)[/tex] is the probability that a person has snowboarded.
- [tex]\( P(B) = \frac{\text{Number of people who have snowboarded}}{\text{Total number of people}} = \frac{48}{300} = 0.16 \)[/tex]
7. Calculate [tex]\( P(A \mid B) \)[/tex]:
- [tex]\( P(A \mid B) \)[/tex] is the conditional probability that a person has surfed given that they have snowboarded.
- [tex]\( P(A \mid B) = \frac{\text{Number of people who have both surfed and snowboarded}}{\text{Number of people who have snowboarded}} = \frac{36}{48} = 0.75 \)[/tex]
8. Compare [tex]\( P(A \mid B) \)[/tex] and [tex]\( P(A) \)[/tex]:
- For the events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be independent, [tex]\( P(A \mid B) \)[/tex] must equal [tex]\( P(A) \)[/tex].
- From the calculations: [tex]\( P(A \mid B) = 0.75 \)[/tex] and [tex]\( P(A) = 0.75 \)[/tex]
Since [tex]\( P(A \mid B) \)[/tex] is indeed equal to [tex]\( P(A) \)[/tex], the events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent.
Therefore, the correct statement is:
A and B are independent events because [tex]\( P(A \mid B ) = P(A) = 0.75 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.