Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find out how many subsets of the set [tex]\( B = \{1, 2, 3, 4\} \)[/tex] have exactly two elements, we need to use combinatorial principles.
The process involves finding combinations of 2 elements from the set [tex]\( B \)[/tex]. In combinatorial terms, this is often denoted as [tex]\( \binom{n}{k} \)[/tex], where [tex]\( n \)[/tex] is the total number of elements in the set, and [tex]\( k \)[/tex] is the number of elements we want to select. Here:
- [tex]\( n = 4 \)[/tex] (since the set [tex]\( B \)[/tex] has 4 elements)
- [tex]\( k = 2 \)[/tex] (since we want to form subsets containing exactly 2 elements)
The formula for combinations is:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Plugging in the values we have:
[tex]\[ \binom{4}{2} = \frac{4!}{2! \cdot (4-2)!} = \frac{4!}{2! \cdot 2!} \][/tex]
First, we compute the factorials:
- [tex]\( 4! = 4 \times 3 \times 2 \times 1 = 24 \)[/tex]
- [tex]\( 2! = 2 \times 1 = 2 \)[/tex]
So,
[tex]\[ \binom{4}{2} = \frac{24}{2 \times 2} = \frac{24}{4} = 6 \][/tex]
Therefore, there are 6 subsets of the set [tex]\( B \)[/tex] that have exactly two elements. The subsets are:
[tex]\[ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \][/tex]
So the correct answer is:
[tex]\[ 6 \][/tex]
The process involves finding combinations of 2 elements from the set [tex]\( B \)[/tex]. In combinatorial terms, this is often denoted as [tex]\( \binom{n}{k} \)[/tex], where [tex]\( n \)[/tex] is the total number of elements in the set, and [tex]\( k \)[/tex] is the number of elements we want to select. Here:
- [tex]\( n = 4 \)[/tex] (since the set [tex]\( B \)[/tex] has 4 elements)
- [tex]\( k = 2 \)[/tex] (since we want to form subsets containing exactly 2 elements)
The formula for combinations is:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Plugging in the values we have:
[tex]\[ \binom{4}{2} = \frac{4!}{2! \cdot (4-2)!} = \frac{4!}{2! \cdot 2!} \][/tex]
First, we compute the factorials:
- [tex]\( 4! = 4 \times 3 \times 2 \times 1 = 24 \)[/tex]
- [tex]\( 2! = 2 \times 1 = 2 \)[/tex]
So,
[tex]\[ \binom{4}{2} = \frac{24}{2 \times 2} = \frac{24}{4} = 6 \][/tex]
Therefore, there are 6 subsets of the set [tex]\( B \)[/tex] that have exactly two elements. The subsets are:
[tex]\[ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \][/tex]
So the correct answer is:
[tex]\[ 6 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.