Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find out how many subsets of the set [tex]\( B = \{1, 2, 3, 4\} \)[/tex] have exactly two elements, we need to use combinatorial principles.
The process involves finding combinations of 2 elements from the set [tex]\( B \)[/tex]. In combinatorial terms, this is often denoted as [tex]\( \binom{n}{k} \)[/tex], where [tex]\( n \)[/tex] is the total number of elements in the set, and [tex]\( k \)[/tex] is the number of elements we want to select. Here:
- [tex]\( n = 4 \)[/tex] (since the set [tex]\( B \)[/tex] has 4 elements)
- [tex]\( k = 2 \)[/tex] (since we want to form subsets containing exactly 2 elements)
The formula for combinations is:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Plugging in the values we have:
[tex]\[ \binom{4}{2} = \frac{4!}{2! \cdot (4-2)!} = \frac{4!}{2! \cdot 2!} \][/tex]
First, we compute the factorials:
- [tex]\( 4! = 4 \times 3 \times 2 \times 1 = 24 \)[/tex]
- [tex]\( 2! = 2 \times 1 = 2 \)[/tex]
So,
[tex]\[ \binom{4}{2} = \frac{24}{2 \times 2} = \frac{24}{4} = 6 \][/tex]
Therefore, there are 6 subsets of the set [tex]\( B \)[/tex] that have exactly two elements. The subsets are:
[tex]\[ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \][/tex]
So the correct answer is:
[tex]\[ 6 \][/tex]
The process involves finding combinations of 2 elements from the set [tex]\( B \)[/tex]. In combinatorial terms, this is often denoted as [tex]\( \binom{n}{k} \)[/tex], where [tex]\( n \)[/tex] is the total number of elements in the set, and [tex]\( k \)[/tex] is the number of elements we want to select. Here:
- [tex]\( n = 4 \)[/tex] (since the set [tex]\( B \)[/tex] has 4 elements)
- [tex]\( k = 2 \)[/tex] (since we want to form subsets containing exactly 2 elements)
The formula for combinations is:
[tex]\[ \binom{n}{k} = \frac{n!}{k!(n-k)!} \][/tex]
Plugging in the values we have:
[tex]\[ \binom{4}{2} = \frac{4!}{2! \cdot (4-2)!} = \frac{4!}{2! \cdot 2!} \][/tex]
First, we compute the factorials:
- [tex]\( 4! = 4 \times 3 \times 2 \times 1 = 24 \)[/tex]
- [tex]\( 2! = 2 \times 1 = 2 \)[/tex]
So,
[tex]\[ \binom{4}{2} = \frac{24}{2 \times 2} = \frac{24}{4} = 6 \][/tex]
Therefore, there are 6 subsets of the set [tex]\( B \)[/tex] that have exactly two elements. The subsets are:
[tex]\[ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\} \][/tex]
So the correct answer is:
[tex]\[ 6 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.