Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
### Question 19: Kinetic Energy
To determine the kinetic energy of the pile driver, follow these steps:
1. Determine the weight of the pile driver:
- The weight [tex]\( W \)[/tex] is given as 8,000 Newtons.
2. Identify the velocity of the pile driver:
- The velocity [tex]\( v \)[/tex] is given as 6 m/s.
3. Understand the relationship between weight, mass, and gravity:
- The weight [tex]\( W \)[/tex] is related to the mass [tex]\( m \)[/tex] via the equation [tex]\( W = m \cdot g \)[/tex], where [tex]\( g \)[/tex] represents the acceleration due to gravity (9.8 m/s^2).
4. Calculate the mass:
[tex]\[ m = \frac{W}{g} = \frac{8000 \text{ N}}{9.8 \text{ m/s}^2} = 816.3265306122448 \text{ kg} \][/tex]
5. Use the kinetic energy formula:
- Kinetic energy [tex]\( KE \)[/tex] is given by [tex]\( KE = 0.5 \cdot m \cdot v^2 \)[/tex].
6. Substitute the values:
[tex]\[ KE = 0.5 \cdot 816.3265306122448 \text{ kg} \cdot (6 \text{ m/s})^2 = 14693.877551020407 \text{ Joules} \][/tex]
Thus, the kinetic energy of the pile driver is approximately 14,693.88 Joules.
### Question 20: Work Done
To determine the work done by the man pulling the sled, follow these steps:
1. Convert the distance from feet to meters:
- The distance [tex]\( d \)[/tex] is given as 20 feet.
- Use the conversion [tex]\( 1 \text{ foot} = 0.3048 \text{ meters} \)[/tex].
[tex]\[ d = 20 \text{ feet} \times 0.3048 \text{ m/foot} = 6.096 \text{ meters} \][/tex]
2. Convert the force from pounds to Newtons:
- The force [tex]\( F \)[/tex] is given as 200 pounds.
- Use the conversion [tex]\( 1 \text{ pound} = 4.44822 \text{ Newtons} \)[/tex].
[tex]\[ F = 200 \text{ pounds} \times 4.44822 \text{ N/pound} = 889.644 \text{ Newtons} \][/tex]
3. Convert the angle from degrees to radians:
- The angle [tex]\( \theta \)[/tex] is given as 40°.
- Use the conversion [tex]\( 1° = \frac{\pi}{180} \text{ radians} \)[/tex].
[tex]\[ \theta = 40° \times \frac{\pi}{180} = 0.6981317007977318 \text{ radians} \][/tex]
4. Use the work done formula:
- Work [tex]\( W \)[/tex] is given by [tex]\( W = F \cdot d \cdot \cos(\theta) \)[/tex].
5. Substitute the values:
[tex]\[ W = 889.644 \text{ N} \cdot 6.096 \text{ meters} \cdot \cos(0.6981317007977318) = 4154.465712210038 \text{ Joules} \][/tex]
Thus, the work done by the man pulling the sled is approximately 4,154.47 Joules.
To determine the kinetic energy of the pile driver, follow these steps:
1. Determine the weight of the pile driver:
- The weight [tex]\( W \)[/tex] is given as 8,000 Newtons.
2. Identify the velocity of the pile driver:
- The velocity [tex]\( v \)[/tex] is given as 6 m/s.
3. Understand the relationship between weight, mass, and gravity:
- The weight [tex]\( W \)[/tex] is related to the mass [tex]\( m \)[/tex] via the equation [tex]\( W = m \cdot g \)[/tex], where [tex]\( g \)[/tex] represents the acceleration due to gravity (9.8 m/s^2).
4. Calculate the mass:
[tex]\[ m = \frac{W}{g} = \frac{8000 \text{ N}}{9.8 \text{ m/s}^2} = 816.3265306122448 \text{ kg} \][/tex]
5. Use the kinetic energy formula:
- Kinetic energy [tex]\( KE \)[/tex] is given by [tex]\( KE = 0.5 \cdot m \cdot v^2 \)[/tex].
6. Substitute the values:
[tex]\[ KE = 0.5 \cdot 816.3265306122448 \text{ kg} \cdot (6 \text{ m/s})^2 = 14693.877551020407 \text{ Joules} \][/tex]
Thus, the kinetic energy of the pile driver is approximately 14,693.88 Joules.
### Question 20: Work Done
To determine the work done by the man pulling the sled, follow these steps:
1. Convert the distance from feet to meters:
- The distance [tex]\( d \)[/tex] is given as 20 feet.
- Use the conversion [tex]\( 1 \text{ foot} = 0.3048 \text{ meters} \)[/tex].
[tex]\[ d = 20 \text{ feet} \times 0.3048 \text{ m/foot} = 6.096 \text{ meters} \][/tex]
2. Convert the force from pounds to Newtons:
- The force [tex]\( F \)[/tex] is given as 200 pounds.
- Use the conversion [tex]\( 1 \text{ pound} = 4.44822 \text{ Newtons} \)[/tex].
[tex]\[ F = 200 \text{ pounds} \times 4.44822 \text{ N/pound} = 889.644 \text{ Newtons} \][/tex]
3. Convert the angle from degrees to radians:
- The angle [tex]\( \theta \)[/tex] is given as 40°.
- Use the conversion [tex]\( 1° = \frac{\pi}{180} \text{ radians} \)[/tex].
[tex]\[ \theta = 40° \times \frac{\pi}{180} = 0.6981317007977318 \text{ radians} \][/tex]
4. Use the work done formula:
- Work [tex]\( W \)[/tex] is given by [tex]\( W = F \cdot d \cdot \cos(\theta) \)[/tex].
5. Substitute the values:
[tex]\[ W = 889.644 \text{ N} \cdot 6.096 \text{ meters} \cdot \cos(0.6981317007977318) = 4154.465712210038 \text{ Joules} \][/tex]
Thus, the work done by the man pulling the sled is approximately 4,154.47 Joules.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.