At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the problem of finding which expression is equal to [tex]\( 1 - \cos^4 \theta \)[/tex], let us start by breaking down the expression and simplifying it step-by-step.
1. Expression Parsing:
We start with the function [tex]\( 1 - \cos^4 \theta \)[/tex].
2. Use the Pythagorean Identity:
Recall the Pythagorean identity:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
From this, we can express [tex]\(\cos^2 \theta\)[/tex] as:
[tex]\[ \cos^2 \theta = 1 - \sin^2 \theta \][/tex]
3. Square the Cosine Expression:
Next, let’s square [tex]\( \cos^2 \theta \)[/tex] to get [tex]\(\cos^4 \theta \)[/tex]:
[tex]\[ \cos^4 \theta = (1 - \sin^2 \theta)^2 \][/tex]
4. Expand the Squared Expression:
Now, let's expand [tex]\( (1 - \sin^2 \theta)^2 \)[/tex]:
[tex]\[ (1 - \sin^2 \theta)^2 = 1 - 2\sin^2 \theta + \sin^4 \theta \][/tex]
5. Substitute Back into the Original Expression:
Substitute the expanded form back into the original expression [tex]\( 1 - \cos^4 \theta \)[/tex]:
[tex]\[ 1 - \cos^4 \theta = 1 - (1 - 2\sin^2 \theta + \sin^4 \theta) \][/tex]
6. Simplify the Expression:
Simplify the expression by distributing the negative sign and combining like terms:
[tex]\[ 1 - (1 - 2\sin^2 \theta + \sin^4 \theta) = 1 - 1 + 2\sin^2 \theta - \sin^4 \theta \][/tex]
[tex]\[ = 2\sin^2 \theta - \sin^4 \theta \][/tex]
Therefore, the expression that is equal to [tex]\( 1 - \cos^4 \theta \)[/tex] is:
[tex]\[ 2\sin^2 \theta - \sin^4 \theta \][/tex]
So, the correct option is:
[tex]\[ \boxed{2 \sin^2 \theta - \sin^4 \theta} \][/tex]
1. Expression Parsing:
We start with the function [tex]\( 1 - \cos^4 \theta \)[/tex].
2. Use the Pythagorean Identity:
Recall the Pythagorean identity:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
From this, we can express [tex]\(\cos^2 \theta\)[/tex] as:
[tex]\[ \cos^2 \theta = 1 - \sin^2 \theta \][/tex]
3. Square the Cosine Expression:
Next, let’s square [tex]\( \cos^2 \theta \)[/tex] to get [tex]\(\cos^4 \theta \)[/tex]:
[tex]\[ \cos^4 \theta = (1 - \sin^2 \theta)^2 \][/tex]
4. Expand the Squared Expression:
Now, let's expand [tex]\( (1 - \sin^2 \theta)^2 \)[/tex]:
[tex]\[ (1 - \sin^2 \theta)^2 = 1 - 2\sin^2 \theta + \sin^4 \theta \][/tex]
5. Substitute Back into the Original Expression:
Substitute the expanded form back into the original expression [tex]\( 1 - \cos^4 \theta \)[/tex]:
[tex]\[ 1 - \cos^4 \theta = 1 - (1 - 2\sin^2 \theta + \sin^4 \theta) \][/tex]
6. Simplify the Expression:
Simplify the expression by distributing the negative sign and combining like terms:
[tex]\[ 1 - (1 - 2\sin^2 \theta + \sin^4 \theta) = 1 - 1 + 2\sin^2 \theta - \sin^4 \theta \][/tex]
[tex]\[ = 2\sin^2 \theta - \sin^4 \theta \][/tex]
Therefore, the expression that is equal to [tex]\( 1 - \cos^4 \theta \)[/tex] is:
[tex]\[ 2\sin^2 \theta - \sin^4 \theta \][/tex]
So, the correct option is:
[tex]\[ \boxed{2 \sin^2 \theta - \sin^4 \theta} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.