Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the problem of finding which expression is equal to [tex]\( 1 - \cos^4 \theta \)[/tex], let us start by breaking down the expression and simplifying it step-by-step.
1. Expression Parsing:
We start with the function [tex]\( 1 - \cos^4 \theta \)[/tex].
2. Use the Pythagorean Identity:
Recall the Pythagorean identity:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
From this, we can express [tex]\(\cos^2 \theta\)[/tex] as:
[tex]\[ \cos^2 \theta = 1 - \sin^2 \theta \][/tex]
3. Square the Cosine Expression:
Next, let’s square [tex]\( \cos^2 \theta \)[/tex] to get [tex]\(\cos^4 \theta \)[/tex]:
[tex]\[ \cos^4 \theta = (1 - \sin^2 \theta)^2 \][/tex]
4. Expand the Squared Expression:
Now, let's expand [tex]\( (1 - \sin^2 \theta)^2 \)[/tex]:
[tex]\[ (1 - \sin^2 \theta)^2 = 1 - 2\sin^2 \theta + \sin^4 \theta \][/tex]
5. Substitute Back into the Original Expression:
Substitute the expanded form back into the original expression [tex]\( 1 - \cos^4 \theta \)[/tex]:
[tex]\[ 1 - \cos^4 \theta = 1 - (1 - 2\sin^2 \theta + \sin^4 \theta) \][/tex]
6. Simplify the Expression:
Simplify the expression by distributing the negative sign and combining like terms:
[tex]\[ 1 - (1 - 2\sin^2 \theta + \sin^4 \theta) = 1 - 1 + 2\sin^2 \theta - \sin^4 \theta \][/tex]
[tex]\[ = 2\sin^2 \theta - \sin^4 \theta \][/tex]
Therefore, the expression that is equal to [tex]\( 1 - \cos^4 \theta \)[/tex] is:
[tex]\[ 2\sin^2 \theta - \sin^4 \theta \][/tex]
So, the correct option is:
[tex]\[ \boxed{2 \sin^2 \theta - \sin^4 \theta} \][/tex]
1. Expression Parsing:
We start with the function [tex]\( 1 - \cos^4 \theta \)[/tex].
2. Use the Pythagorean Identity:
Recall the Pythagorean identity:
[tex]\[ \sin^2 \theta + \cos^2 \theta = 1 \][/tex]
From this, we can express [tex]\(\cos^2 \theta\)[/tex] as:
[tex]\[ \cos^2 \theta = 1 - \sin^2 \theta \][/tex]
3. Square the Cosine Expression:
Next, let’s square [tex]\( \cos^2 \theta \)[/tex] to get [tex]\(\cos^4 \theta \)[/tex]:
[tex]\[ \cos^4 \theta = (1 - \sin^2 \theta)^2 \][/tex]
4. Expand the Squared Expression:
Now, let's expand [tex]\( (1 - \sin^2 \theta)^2 \)[/tex]:
[tex]\[ (1 - \sin^2 \theta)^2 = 1 - 2\sin^2 \theta + \sin^4 \theta \][/tex]
5. Substitute Back into the Original Expression:
Substitute the expanded form back into the original expression [tex]\( 1 - \cos^4 \theta \)[/tex]:
[tex]\[ 1 - \cos^4 \theta = 1 - (1 - 2\sin^2 \theta + \sin^4 \theta) \][/tex]
6. Simplify the Expression:
Simplify the expression by distributing the negative sign and combining like terms:
[tex]\[ 1 - (1 - 2\sin^2 \theta + \sin^4 \theta) = 1 - 1 + 2\sin^2 \theta - \sin^4 \theta \][/tex]
[tex]\[ = 2\sin^2 \theta - \sin^4 \theta \][/tex]
Therefore, the expression that is equal to [tex]\( 1 - \cos^4 \theta \)[/tex] is:
[tex]\[ 2\sin^2 \theta - \sin^4 \theta \][/tex]
So, the correct option is:
[tex]\[ \boxed{2 \sin^2 \theta - \sin^4 \theta} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.