Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To apply the Runge-Kutta method of fourth order to find an approximate solution at [tex]\( x = 0.1 \)[/tex] for the differential equation [tex]\( \frac{dy}{dx} = 3x + \frac{y}{2} \)[/tex] with the initial condition [tex]\( y(0) = 1 \)[/tex], we will follow these steps:
1. Define the differential equation and initial conditions:
[tex]\[ \frac{dy}{dx} = 3x + \frac{y}{2} \][/tex]
Initial condition: [tex]\( x_0 = 0 \)[/tex], [tex]\( y_0 = 1 \)[/tex]
Step size: [tex]\( h = 0.1 \)[/tex]
Endpoint: [tex]\( x = 0.1 \)[/tex]
2. Compute the slopes ([tex]\(k\)[/tex] values) for the Runge-Kutta method:
- Calculate [tex]\( k_1 \)[/tex]:
[tex]\[ k_1 = h \cdot f(x_0, y_0) = 0.1 \cdot (3 \cdot 0 + \frac{1}{2}) = 0.1 \cdot 0.5 = 0.05 \][/tex]
- Calculate [tex]\( k_2 \)[/tex]:
[tex]\[ k_2 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.05}{2}}{2}\right) \][/tex]
[tex]\[ k_2 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.025}{2}\right) = 0.1 \cdot (0.15 + 0.5125) = 0.1 \cdot 0.6625 = 0.06625 \][/tex]
- Calculate [tex]\( k_3 \)[/tex]:
[tex]\[ k_3 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.06625}{2}}{2}\right) \][/tex]
[tex]\[ k_3 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.033125}{2}\right) = 0.1 \cdot (0.15 + 0.5165625) = 0.1 \cdot 0.6665625 = 0.06665625 \][/tex]
- Calculate [tex]\( k_4 \)[/tex]:
[tex]\[ k_4 = h \cdot f(x_0 + h, y_0 + k_3) = 0.1 \cdot \left(3 \cdot 0.1 + \frac{1 + 0.06665625}{2}\right) \][/tex]
[tex]\[ k_4 = 0.1 \cdot \left(0.3 + \frac{1.06665625}{2}\right) = 0.1 \cdot (0.3 + 0.533328125) = 0.1 \cdot 0.833328125 = 0.0833328125 \][/tex]
3. Calculate the next value of [tex]\( y \)[/tex] ([tex]\( y_{1} \)[/tex]) using the [tex]\( k \)[/tex] values:
[tex]\[ y_{1} = y_{0} + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 2 \cdot 0.06625 + 2 \cdot 0.06665625 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 0.1325 + 0.1333125 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.3991453125}{6} \][/tex]
[tex]\[ y_{1} = 1 + 0.06652421875 \][/tex]
Thus, the approximate value of [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is:
[tex]\[ y(0.1) \approx 1.06652421875 \][/tex]
Therefore, using the Runge-Kutta method of fourth order, we find that the approximate solution for [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is [tex]\( y(0.1) \approx 1.0665 \)[/tex].
1. Define the differential equation and initial conditions:
[tex]\[ \frac{dy}{dx} = 3x + \frac{y}{2} \][/tex]
Initial condition: [tex]\( x_0 = 0 \)[/tex], [tex]\( y_0 = 1 \)[/tex]
Step size: [tex]\( h = 0.1 \)[/tex]
Endpoint: [tex]\( x = 0.1 \)[/tex]
2. Compute the slopes ([tex]\(k\)[/tex] values) for the Runge-Kutta method:
- Calculate [tex]\( k_1 \)[/tex]:
[tex]\[ k_1 = h \cdot f(x_0, y_0) = 0.1 \cdot (3 \cdot 0 + \frac{1}{2}) = 0.1 \cdot 0.5 = 0.05 \][/tex]
- Calculate [tex]\( k_2 \)[/tex]:
[tex]\[ k_2 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.05}{2}}{2}\right) \][/tex]
[tex]\[ k_2 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.025}{2}\right) = 0.1 \cdot (0.15 + 0.5125) = 0.1 \cdot 0.6625 = 0.06625 \][/tex]
- Calculate [tex]\( k_3 \)[/tex]:
[tex]\[ k_3 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.06625}{2}}{2}\right) \][/tex]
[tex]\[ k_3 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.033125}{2}\right) = 0.1 \cdot (0.15 + 0.5165625) = 0.1 \cdot 0.6665625 = 0.06665625 \][/tex]
- Calculate [tex]\( k_4 \)[/tex]:
[tex]\[ k_4 = h \cdot f(x_0 + h, y_0 + k_3) = 0.1 \cdot \left(3 \cdot 0.1 + \frac{1 + 0.06665625}{2}\right) \][/tex]
[tex]\[ k_4 = 0.1 \cdot \left(0.3 + \frac{1.06665625}{2}\right) = 0.1 \cdot (0.3 + 0.533328125) = 0.1 \cdot 0.833328125 = 0.0833328125 \][/tex]
3. Calculate the next value of [tex]\( y \)[/tex] ([tex]\( y_{1} \)[/tex]) using the [tex]\( k \)[/tex] values:
[tex]\[ y_{1} = y_{0} + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 2 \cdot 0.06625 + 2 \cdot 0.06665625 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 0.1325 + 0.1333125 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.3991453125}{6} \][/tex]
[tex]\[ y_{1} = 1 + 0.06652421875 \][/tex]
Thus, the approximate value of [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is:
[tex]\[ y(0.1) \approx 1.06652421875 \][/tex]
Therefore, using the Runge-Kutta method of fourth order, we find that the approximate solution for [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is [tex]\( y(0.1) \approx 1.0665 \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.