At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To apply the Runge-Kutta method of fourth order to find an approximate solution at [tex]\( x = 0.1 \)[/tex] for the differential equation [tex]\( \frac{dy}{dx} = 3x + \frac{y}{2} \)[/tex] with the initial condition [tex]\( y(0) = 1 \)[/tex], we will follow these steps:
1. Define the differential equation and initial conditions:
[tex]\[ \frac{dy}{dx} = 3x + \frac{y}{2} \][/tex]
Initial condition: [tex]\( x_0 = 0 \)[/tex], [tex]\( y_0 = 1 \)[/tex]
Step size: [tex]\( h = 0.1 \)[/tex]
Endpoint: [tex]\( x = 0.1 \)[/tex]
2. Compute the slopes ([tex]\(k\)[/tex] values) for the Runge-Kutta method:
- Calculate [tex]\( k_1 \)[/tex]:
[tex]\[ k_1 = h \cdot f(x_0, y_0) = 0.1 \cdot (3 \cdot 0 + \frac{1}{2}) = 0.1 \cdot 0.5 = 0.05 \][/tex]
- Calculate [tex]\( k_2 \)[/tex]:
[tex]\[ k_2 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.05}{2}}{2}\right) \][/tex]
[tex]\[ k_2 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.025}{2}\right) = 0.1 \cdot (0.15 + 0.5125) = 0.1 \cdot 0.6625 = 0.06625 \][/tex]
- Calculate [tex]\( k_3 \)[/tex]:
[tex]\[ k_3 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.06625}{2}}{2}\right) \][/tex]
[tex]\[ k_3 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.033125}{2}\right) = 0.1 \cdot (0.15 + 0.5165625) = 0.1 \cdot 0.6665625 = 0.06665625 \][/tex]
- Calculate [tex]\( k_4 \)[/tex]:
[tex]\[ k_4 = h \cdot f(x_0 + h, y_0 + k_3) = 0.1 \cdot \left(3 \cdot 0.1 + \frac{1 + 0.06665625}{2}\right) \][/tex]
[tex]\[ k_4 = 0.1 \cdot \left(0.3 + \frac{1.06665625}{2}\right) = 0.1 \cdot (0.3 + 0.533328125) = 0.1 \cdot 0.833328125 = 0.0833328125 \][/tex]
3. Calculate the next value of [tex]\( y \)[/tex] ([tex]\( y_{1} \)[/tex]) using the [tex]\( k \)[/tex] values:
[tex]\[ y_{1} = y_{0} + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 2 \cdot 0.06625 + 2 \cdot 0.06665625 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 0.1325 + 0.1333125 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.3991453125}{6} \][/tex]
[tex]\[ y_{1} = 1 + 0.06652421875 \][/tex]
Thus, the approximate value of [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is:
[tex]\[ y(0.1) \approx 1.06652421875 \][/tex]
Therefore, using the Runge-Kutta method of fourth order, we find that the approximate solution for [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is [tex]\( y(0.1) \approx 1.0665 \)[/tex].
1. Define the differential equation and initial conditions:
[tex]\[ \frac{dy}{dx} = 3x + \frac{y}{2} \][/tex]
Initial condition: [tex]\( x_0 = 0 \)[/tex], [tex]\( y_0 = 1 \)[/tex]
Step size: [tex]\( h = 0.1 \)[/tex]
Endpoint: [tex]\( x = 0.1 \)[/tex]
2. Compute the slopes ([tex]\(k\)[/tex] values) for the Runge-Kutta method:
- Calculate [tex]\( k_1 \)[/tex]:
[tex]\[ k_1 = h \cdot f(x_0, y_0) = 0.1 \cdot (3 \cdot 0 + \frac{1}{2}) = 0.1 \cdot 0.5 = 0.05 \][/tex]
- Calculate [tex]\( k_2 \)[/tex]:
[tex]\[ k_2 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.05}{2}}{2}\right) \][/tex]
[tex]\[ k_2 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.025}{2}\right) = 0.1 \cdot (0.15 + 0.5125) = 0.1 \cdot 0.6625 = 0.06625 \][/tex]
- Calculate [tex]\( k_3 \)[/tex]:
[tex]\[ k_3 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.06625}{2}}{2}\right) \][/tex]
[tex]\[ k_3 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.033125}{2}\right) = 0.1 \cdot (0.15 + 0.5165625) = 0.1 \cdot 0.6665625 = 0.06665625 \][/tex]
- Calculate [tex]\( k_4 \)[/tex]:
[tex]\[ k_4 = h \cdot f(x_0 + h, y_0 + k_3) = 0.1 \cdot \left(3 \cdot 0.1 + \frac{1 + 0.06665625}{2}\right) \][/tex]
[tex]\[ k_4 = 0.1 \cdot \left(0.3 + \frac{1.06665625}{2}\right) = 0.1 \cdot (0.3 + 0.533328125) = 0.1 \cdot 0.833328125 = 0.0833328125 \][/tex]
3. Calculate the next value of [tex]\( y \)[/tex] ([tex]\( y_{1} \)[/tex]) using the [tex]\( k \)[/tex] values:
[tex]\[ y_{1} = y_{0} + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 2 \cdot 0.06625 + 2 \cdot 0.06665625 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 0.1325 + 0.1333125 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.3991453125}{6} \][/tex]
[tex]\[ y_{1} = 1 + 0.06652421875 \][/tex]
Thus, the approximate value of [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is:
[tex]\[ y(0.1) \approx 1.06652421875 \][/tex]
Therefore, using the Runge-Kutta method of fourth order, we find that the approximate solution for [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is [tex]\( y(0.1) \approx 1.0665 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.