Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Apply the Runge-Kutta method of fourth order to find an approximate solution at [tex]x=0.1[/tex], given [tex]\frac{d y}{d x}=3 x + \frac{y}{2}, \ y(0)=1[/tex].

Sagot :

To apply the Runge-Kutta method of fourth order to find an approximate solution at [tex]\( x = 0.1 \)[/tex] for the differential equation [tex]\( \frac{dy}{dx} = 3x + \frac{y}{2} \)[/tex] with the initial condition [tex]\( y(0) = 1 \)[/tex], we will follow these steps:

1. Define the differential equation and initial conditions:

[tex]\[ \frac{dy}{dx} = 3x + \frac{y}{2} \][/tex]
Initial condition: [tex]\( x_0 = 0 \)[/tex], [tex]\( y_0 = 1 \)[/tex]
Step size: [tex]\( h = 0.1 \)[/tex]
Endpoint: [tex]\( x = 0.1 \)[/tex]

2. Compute the slopes ([tex]\(k\)[/tex] values) for the Runge-Kutta method:

- Calculate [tex]\( k_1 \)[/tex]:
[tex]\[ k_1 = h \cdot f(x_0, y_0) = 0.1 \cdot (3 \cdot 0 + \frac{1}{2}) = 0.1 \cdot 0.5 = 0.05 \][/tex]

- Calculate [tex]\( k_2 \)[/tex]:
[tex]\[ k_2 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.05}{2}}{2}\right) \][/tex]
[tex]\[ k_2 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.025}{2}\right) = 0.1 \cdot (0.15 + 0.5125) = 0.1 \cdot 0.6625 = 0.06625 \][/tex]

- Calculate [tex]\( k_3 \)[/tex]:
[tex]\[ k_3 = h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0.1 \cdot \left(3 \cdot \frac{0.1}{2} + \frac{1 + \frac{0.06625}{2}}{2}\right) \][/tex]
[tex]\[ k_3 = 0.1 \cdot \left(3 \cdot 0.05 + \frac{1.033125}{2}\right) = 0.1 \cdot (0.15 + 0.5165625) = 0.1 \cdot 0.6665625 = 0.06665625 \][/tex]

- Calculate [tex]\( k_4 \)[/tex]:
[tex]\[ k_4 = h \cdot f(x_0 + h, y_0 + k_3) = 0.1 \cdot \left(3 \cdot 0.1 + \frac{1 + 0.06665625}{2}\right) \][/tex]
[tex]\[ k_4 = 0.1 \cdot \left(0.3 + \frac{1.06665625}{2}\right) = 0.1 \cdot (0.3 + 0.533328125) = 0.1 \cdot 0.833328125 = 0.0833328125 \][/tex]

3. Calculate the next value of [tex]\( y \)[/tex] ([tex]\( y_{1} \)[/tex]) using the [tex]\( k \)[/tex] values:

[tex]\[ y_{1} = y_{0} + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 2 \cdot 0.06625 + 2 \cdot 0.06665625 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.05 + 0.1325 + 0.1333125 + 0.0833328125}{6} \][/tex]
[tex]\[ y_{1} = 1 + \frac{0.3991453125}{6} \][/tex]
[tex]\[ y_{1} = 1 + 0.06652421875 \][/tex]

Thus, the approximate value of [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is:

[tex]\[ y(0.1) \approx 1.06652421875 \][/tex]

Therefore, using the Runge-Kutta method of fourth order, we find that the approximate solution for [tex]\( y \)[/tex] at [tex]\( x = 0.1 \)[/tex] is [tex]\( y(0.1) \approx 1.0665 \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.